skvorec3424
?>

Найти: sin a/2, cos a/2, tg a/2, если: cosa = -12/-13, p < a < корень из нужно

Алгебра

Ответы

Yevgenevich1150
ответ. В каждом размере либо левых и правых поровну, либо каких-то больше. Если левых и правых поровну, то их по 50 – вот мы и нашли 50 годных пар. Пусть в каждом размере или левых или правых больше. Можно считать, что в двух размерах больше левых, а в еще одном больше правых. (Во всех трех размерах левых быть больше не может, так как всего левых и правых сапог поровну). 
Введем обозначения, пусть в первых двух размерах правых A и B, а левых тогда 100-A и 100-B. В третьем размере левых C, а правых 100-С. Так как в первых двух размерах правых меньше, то там можно найти соответственно A и B пар, а в третьем размере левых меньше, значит там C годных пар. Мы еще не воспользовались условием, что всего 150 правых сапог. Это условие означает, что A+B+(100-C)=150, Откуда A+B=50+C50. Значит, всего пар годных сапог будет A+B+CA+B50. 
tarasovs

сумма n последовательных нечетных натуральных чисел при n>1

1+3+5+7+...+(2n-1)=n^2

Доказательство методом математической индукции

База индукции

n=2. 1+3=2^2

Гипотеза индукции

Пусть для n=k утверждение выполняется, т.е. выполняется

1+3+5+7+...+(2k-1)=k^2

Индукционный переход. Докажем, что тогда выполняется утверждение и для n=k+1, т.е, что выполняется

1+3+5+7+...+(2k-1)+(2K+1)=(k+1)^2

1+3+5+7+...+(2k-1)+(2K+1)=используем гипотезу МИ=k^2+(2k+1)=k^2+2k+1=используем формлу квадрату двучлена=(k+1)^2, что и требовалось доказать.

По методому математической индукции формула справедлива.

Число n^2 при n>1 zвляется составным, оно делится на 1,n,n^2.

А значит сумма n последовательных нечетных натуральных чисел при n>1 является составным числом. Доказано

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найти: sin a/2, cos a/2, tg a/2, если: cosa = -12/-13, p < a < корень из нужно
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

ddavydov1116
Валуева
Alex-kustov
Melsan19914239
Наталья Юрьевич1228
sv-opt0076
mixtabak2
Aksinya1036
prostopo4ta29
maksimovskiy7657
Litvin_Ivanov
Ivanova.i.bkrasheninnikov
bykovaam
Stroeva19651938
Salnikov1730