В первой ячейке 3, во второй 100 в нижней ячейке знаменателя 9
Марина Федорович924
27.05.2023
1-весь заказ 1/х - работа за час 1-й компании 1/(х+9) - работа за час второй компании 1/х+1/(х+9) = 1\20 - ПЕРЕНЕСЕМ 1\20 В ЛЕВУЮ ЧАСТЬ 1/х+1/(х+9) - 1\20 = 0 ПРИВЕДЕМ ВСЕ ОДНОЧЛЕНЫ К ОБЩЕМУ ЗНАМЕНАТЕЛЮ 1/х + 1/(х+9) - 1\20 / 20*х(х+9) = 0 домножим обе части на знаменатель,т.е. избавимся от него. Получим это уравнение 20х+180+20х-х²-9х = 0 -х²+31х+180= 0 D = 961+720 = 1681 (41) x1 = (-31+41):(-2) <0 - не подходит по смыслу. х2 = (-31-41):(-2) = 36 (часов надо 1 бригаде) 36+9 = 45 ответ за 45 часов выполнит работу 2 бригада.
mgrunova3966
27.05.2023
Сначала выразим tg(3a) через tg(a)
Получили
Мы знаем, что tg(a) - целое. Если tg(3a) тоже целое, то 3-tg^2(a) делится нацело на 1-3tg^2(a).
Ясно, что при tg a = 0 будет tg 3a = 0 Далее, например, при tg(a) = 1 получаем tg(3a) = 1*(3 - 1)/(1 - 3)= 1*2/(-2) = -1 А при tg(a) = -1 получаем tg(3a) = -1*(3 - 1)/(1 - 3) = (-1)*2/(-2) = 1 Но уже при tg(a) = 2 мы получаем tg(3a) = 2*(3 - 4)/(1 - 3*4) = 2*(-1)/(-11) = 2/11 Соответственно, при tg(a) = -2 мы получим tg(3a) = -2/11. Это уже нецелые значения, и ни при каких других а целых не будет. ответ: (0; 0); (1; -1); (-1; 1)
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Дано лінійне рівняння з двома змінними 3x−9y+100=0. Вирази змінну \(y\) через іншу змінну \(x\):
3х-9у+100=0
-9у=-100-3х
у=(3х+(100))/9
В первой ячейке 3, во второй 100 в нижней ячейке знаменателя 9