Наименьшее значение функции равно 4, а наибольшее равно 58 .
Демидова Красноцветов
24.01.2020
Нужно найти наименьшее натуральное число, которое при умножении на 2 даст полный квадрат, а при умножении на 3 - полный куб. Обозначим искомое число за . Любое число можно представить в виде произведения простых множителей. Запишем: , где - некоторые натуральные числа. По условию, число является полным квадратом, значит и - четные числа, а - полный квадрат. Аналогично, число является полным кубом, значит и делятся на 3, а - полный куб. Легко видеть, что наименьшие возможные значения это , значит .
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Реши уравнение (относительно x): m^2 * (x−1) − m = mx − 2. ответ: Если m = _ ; _, то Если m ≠ _ ; _, то
y = - x³ + 3x² + 4
Найдём производную :
y' = (- x³)' + 3(x²)' + 4' = - 3x² + 6x
Приравняем производную к нулю , найдём критические точки :
- 3x² + 6x = 0
- 3x(x - 2) = 0
x₁ = 0
x - 2 = 0 ⇒ x₂ = 2
Обе критические точки принадлежат заданному отрезку. Найдём значения функции в критических точках и на концах отрезка и сравним их .
y(- 3) = -(- 3)³ + 3 * (- 3)² + 4 = 27 + 27 + 4 = 58
y( 3) = - 3³ + 3 * 3² + 4 = - 27 + 27 + 4 = 4
y( 0) = - 0³ + 3 * 0² + 4 = 4
y(2) = - 2³ + 3 * 2² + 4 = - 8 + 12 + 4 = 8
Наименьшее значение функции равно 4, а наибольшее равно 58 .