Пусть большее число будет x, числа последовательны,тогда второе число будет( x-1), а третье x-2. Составим уравнение:
x^2-(x-1)*(x-2)=19
x^2-x^4+2x^2+x^2-2=19
x^4-4x^2+21=0
Решим бинарное уравнение: заменим x^2 на у: получим квадратное уравнение: y^2-4y+21=0
Так как |а| =1 , то решаем по теореме Виета:{y1+y2=4
{y1*y2=21>y1=-3,y2=7
Следовательно y=-3(не подходит, так как квадрат числа не может быть отрицательным>x=7-большее число: x-1=7-1=6-второе число, x-2=7-2=5- третье число.
ответ: это числа 5,6 и 7
Пусть большее число будет x, числа последовательны,тогда второе число будет( x-1), а третье x-2. Составим уравнение:
x^2-(x-1)*(x-2)=19
x^2-x^4+2x^2+x^2-2=19
x^4-4x^2+21=0
Решим бинарное уравнение: заменим x^2 на у: получим квадратное уравнение: y^2-4y+21=0
Так как |а| =1 , то решаем по теореме Виета:{y1+y2=4
{y1*y2=21>y1=-3,y2=7
Следовательно y=-3(не подходит, так как квадрат числа не может быть отрицательным>x=7-большее число: x-1=7-1=6-второе число, x-2=7-2=5- третье число.
ответ: это числа 5,6 и 7
Поделитесь своими знаниями, ответьте на вопрос:
Рассчитай расстояние вершины куба до диагонали куба, которая не проходит через эту вершину, если ребро куба — 12 см.
Так как куб является правильным многогранником, то выбираем любую вершину, например, A.
Через эту вершину не проходят 3 диагонали. Все диагонали равны, и для расчётов можем построить три равных прямоугольных треугольника. Расчёты проведём в одном из них, например, в ΔAA1C.
Если длина ребра куба равна a, то диагональ грани куба равна a2–√, а диагональ куба — a3–√.
Треугольник прямоугольный, так как грани куба взаимно перпендикулярны.
Искомое расстояние вершины A до диагонали есть высота этого треугольника, проведённая к гипотенузе. Высоту можно определить, например, сравнивая выражения площади треугольника: