Даны два прожектора, расстояние между которыми равно 30 м, и соотношение мощности освещения которых равно 27 : 8. В какой точке отрезка, соединяющего эти прожекторы, освещенность наименьшая?
но -√17 может быть и положительным, тогда так же возведем в квадрат 17,64 > 17 тот же рез-т
2: два слагаемых. одно рациональное, второе иррациональное - т. к. корень из 3 и из 7 десятичная непериодическая бесконечная дробь (не может быть представлено в виде обыкновенной дроби)
Сумма рационального и иррационального - иррациональное.
Доказывается так: сумма (разность) двух рациональных - рациональное, если в данном случае сумма (разность) будет рациональным, то оба числа в условии рациональные, а это не так, см. выше.
3. смотрим ближайшие целые квадраты: 16 и 25, т. е. между 4 и 5
4. Возведем все в квадрат и избавимся от иррациональности: 30, 27 30,25
Значит 5,5, √30, 3√3
Алёна Геннадьевна98
20.02.2023
1.√(7-3x)>5 ОДЗ: 7-3х≥0 Возводим обе части неравенства в квадрат: 7-3х> 25; Система: 7-3х≥0; 7-3х >25 равносильна неравенству 7-3х>25; -3x> 25-7; -3x > 18; x< -6. ответ. (-∞;-6). 2. √(2x+1)>-3 неравенство верно при любом х из ОДЗ. ОДЗ: 2х+1 ≥ 0 х ≥ -0,5 О т в е т. [-0,5;+∞) 3. √(3+2x)>=√(x+1) ОДЗ: 3+2х≥0 ⇒ x ≥ -1,5 х+1≥0 ⇒ x ≥-1 ОДЗ: х≥-1 Возводим неравенство в квадрат. 3+2х ≥ х+1; х ≥ -2 ответ с учетом ОДЗ х≥ -1 О т в е т. [-1;+∞)
4. √(8-2x)=<√(6x+15) ОДЗ: 8-2х ≥0 ⇒ х ≤ 4 6х+15≥0 ⇒ х≥-2,5 ОДЗ: - 2,5 ≤ х ≤ 4. Возводим неравенство в квадрат: 8 - 2х ≤ 6х + 15; -2х - 6х ≤ 15 - 8 - 8х ≤ 7 х ≥ -7/8 С учетом ОДЗ: О т в е т. [-7/8;4]
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Даны два прожектора, расстояние между которыми равно 30 м, и соотношение мощности освещения которых равно 27 : 8. В какой точке отрезка, соединяющего эти прожекторы, освещенность наименьшая?
5,5, √30, 3√3
Объяснение:
1. Судя по всему что больше?
а)Взведем в квадрат 32.49>31 значит 5,7 >√31
б) тут 4,2 >0, -√17 <0 значит 4.2>-√17
но -√17 может быть и положительным, тогда так же возведем в квадрат 17,64 > 17 тот же рез-т
2: два слагаемых. одно рациональное, второе иррациональное - т. к. корень из 3 и из 7 десятичная непериодическая бесконечная дробь (не может быть представлено в виде обыкновенной дроби)
Сумма рационального и иррационального - иррациональное.
Доказывается так: сумма (разность) двух рациональных - рациональное, если в данном случае сумма (разность) будет рациональным, то оба числа в условии рациональные, а это не так, см. выше.
3. смотрим ближайшие целые квадраты: 16 и 25, т. е. между 4 и 5
4. Возведем все в квадрат и избавимся от иррациональности: 30, 27 30,25
Значит 5,5, √30, 3√3