||x-2|-3x|=2x+2 Подмодульная функция x-2 преобразуется в нуль в точке x=2. При меньших значениях за 2 она отрицательная и положительная для x>2. На основе этого раскрываем внутренний модуль и рассматриваем равенство на каждом из интервалов. при x∈(-∞;2) x-2<0 и |-x+2-3x|=2x+2⇒|2-4x|=2x+2 Подмодульная функция равна нулю в точке x=1/2. При меньших значениях она знакоположительная, при больших – отрицательная. Раскроем модуль для x<1/2 2-4x=2x+2⇒6x=0⇒x=0∈(-∞;1/2) Следующим шагом раскрываем модуль на интервале (1/2;2) -2+4x=2x+2⇒2x=4⇒x=2∉(1/2;2) Раскроем внутренний модуль для x>2 |x-2-3x|=2x+2⇒|-2-2x|=2x+2 Подмодульная функция положительная при x<-1 и отрицательная при x>-1 раскрываем модуль на интервале (2;∞) 2+2x=2x+2⇒x∈(2;∞) итак, х∈{0;(2;∞)} .
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
АЛГЕБРА Избавьтесь от иррациональности в знаменателе. 6/√m + 2 (m только под корнем)
Объяснение:
надо домножить числитель и знаменатель дроби на
Vm -2 (V- корень), 6*(Vm-2)/(Vm+2)(Vm-2)=(6Vm+12)/[(Vm)^2-4)]=
(6Vm+12)/(m-4), ( по формуле (a-b)(a+b)=a^2-b^2)