Leon-12
?>

ВЫЧИСЛИТЬ ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ.

Алгебра

Ответы

phmad7

Свойства неравенств:

1. Если к обеим частям верного неравенства прибавить (отнять) одно и тоже число, то получится верное неравенство.

2. Если обе части неравенства умножить или разделить на одно и то же положительное число, то знак неравенства останется прежним; если же - на отрицательное, то знак неравенства изменится на противоположный.

3. Неравенства одного знака можно складывать.

4. Неравенства одного знака можно умножать, если их левые и правые части положительны.

№ 1. 4 < а < 9 и 3 < b < 8.  

1)   4 < а < 9          2) 4 < а < 9                3)  3 < b < 8

    3 < b < 8              3 < b < 8                     -9 < -a < -4

  7 < a + b < 17          12 < ab < 72                -6 < b - a < 4

4) 16 < 4a < 36              5) 12 < 3a < 27

   9 < 3b < 24                   -32 < -4b < -12

    25 < 4a + 3b < 60        -20 < 3a - 4b < 15

№ 2. Средняя линия трапеции равна полусумме оснований,

        т.е. с = (a + b)/2.

        10 < а < 14

         9 < b < 16

         19 < a + b < 30

         9,5 < (a + b)/2 < 15

         9,5 < c  < 15

AnvarzhonovichNadezhda1071

1)Определение. Первообразной для функции f называется такая функция F, производная которой равна данной функции.

2)Если F1 и F2 – две первообразные для одной и той же функции f, то они отличаются на постоянное слагаемое. ... Функция, производная которой тождественно равна нулю, является постоянной. Итак, F1 – F2 = С. Таким образом, все первообразные для функции f получаются из одной из них прибавлением к ней произвольной постоянной.

3)совокупность первообразных функции и называется непределенным интегралом от функции . Совокупность всех первообразных функции называется неопределенным интегралом от и обозначается символическим выражением , которое читается "интеграл от эф от икс по дэ икс".

4) Знак интеграла (∫) используется для обозначения интеграла в математике.

5)Множество всех первообразных F(x)+C функции f(x) называется неопределенным интегралом функции f(x) и обозначается . Символ называется интегралом, f(x) называется подынтегральной функцией, f(x)dx называется подынтегральным выражением, x называется переменной интегрирования.

6)Подынтегральное выражение представляет собой дифференциал функции f(x). Действие нахождения неизвестной функции по заданному ее дифференциалу называется неопределенным интегрированием, потому что результатом интегрирования является не одна функция F(x), а множество ее первообразных F(x)+C.

7)Если – одна из первообразных некоторой функции , то совокупность всех первообразных этой функции можно представить в виде , где C – произвольная постоянная. Функция, имеющая первообразную в некотором промежутке, называется интегрируемой, а процедуру нахождения первообразной называют интегрированием этой функции.

8)Неопределенный интеграл его свойства. ... Множество всех первообразных некоторой функции f(x) называется неопределенным интегралом функции f(x) и обозначается как ∫f(x)dx. Таким образом, если F - некоторая частная первообразная, то справедливо выражение ∫f(x)dx=F(x)+C, где C - произвольная постоянная.

9)Метод интегрирования, при котором интеграл с тождественных преобразований подынтегральной функции и применения свойств интеграла приводится к одному или нескольким табличным интегралам, называется непосредственным интегрированием.

10)Геометрически определённый интеграл выражает площадь «криволинейной трапеции», ограниченной графиком функции[⇨].

11)Формула Ньютона-Лейбница - даёт соотношение между операциями взятия определенного интеграла и вычисления первообразной. Формула Ньютона-Лейбница - основная формула интегрального исчисления. Данная формула верна для любой функции f(x), непрерывной на отрезке [а, b], F - первообразная для f(x).

12)Криволинейная трапеция – плоская фигура, ограниченная графиком неотрицательной непрерывной функции у = f(x), определенной на отрезке [a; b], осью абсцисс и прямыми х = а, х = b – см. рис.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

ВЫЧИСЛИТЬ ОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

rnimsk149
office426
tatianaavoronina66
.................................​
edvlwork15
anitanemtsewa
f-d-a-14
northwest7745
Platon
nevori
irina-mic
radatailless
ПетросовичЗаславский
решить премер по алгебре под номером 1 ​
kronid12
annazhurawlewa
Rubber-soul