В решении.
Объяснение:
1. Используя обозначения N ; Z ; Q и знаки ∈ ; ∉ , запиши следующее утверждение:
−13 — рациональное число.
ответ : -13∈Q.
(-13 принадлежит множеству рациональных чисел Q).
2. Дан интервал (−8; 8) .
Укажи:
а) числовое множество, содержащееся в этом интервале:
[−6;7]
[8;10]
[−8;6)
б) числовое множество, не содержащееся в этом интервале:
(0;1)
[8;10]
[−6;7]
в) целое число, принадлежащее данному интервалу и отстоящее на одинаковое расстояние от его концов (запиши число): 0. (0 относится к множеству целых чисел Z).
3. Укажи, является ли следующее высказывание истинным:
14/5⋅4/7:2/5∈N.
14/5 * 4/7 : 2/5 = (14 * 4 * 5)/(5 * 7 * 2) = 4
ответ (выбери один вариант ответа и вычисли результат):
высказывание является истинным, так как 14/5⋅4/7:2/5= 4, а 4∈N (число 4 принадлежит множеству натуральных чисел N).
Для решения примеров нужно воспользоваться формулами сокращенного умножения, в частности формулой разности квадратов: a² - b² = (a - b)(a + b).
1) (a + 2b)² - (3c + 4d)² = (a + 2b - 3c - 4d)(a + 2b + 3c + 4d);
2) (m - 2n)² - (2p - 3q)² = (m - 2n - (2p - 3q))(m - 2n + 2p - 3q) = (m - 2n - 2p + 3q)(m - 2n + 2p - 3q);
3) 9(m + n)² - (m - n)² = (3(m + n))² - (m - n)² = (3(m + n) - (m - n))(3(m + n) + m - n) = (3m + 3n - m + n)(3m + 3n + m - n) = (2m + 4n)(4m + 2n) = 2(m + 2n) · 2(2m + n) = 4(m + 2n)(2m + n);
4) 16(a + b)² - 9(x + y)² = (4(a + b))² - (3(x + y))² = (4a + 4b - (3x + 3y))(4a + 4b + 3x + 3y) = (4a + 4b - 3x - 3y)(4a + 4b + 3x +
Поделитесь своими знаниями, ответьте на вопрос:
Решите нужно сверить ! sin( 7π/2- 2α)cos( ( 6π)/2-α) sinα; α=3π/16;
a = 3pi/16