Daulyatyanov1266
?>

Найдите аn и d арифметической прогрессии, у которой:1) а1 = 40, n = 20, S20 = -40; 2) а1 = 1/3, n = 16, S16= -10 2/33) а =-4, n=11, S11=231.​

Алгебра

Ответы

ribanina

ответ: Если будет что-то не ясно пиши

Объяснение:


Найдите аn и d арифметической прогрессии, у которой:1) а1 = 40, n = 20, S20 = -40; 2) а1 = 1/3, n =
Найдите аn и d арифметической прогрессии, у которой:1) а1 = 40, n = 20, S20 = -40; 2) а1 = 1/3, n =
yana2211
Первое задание:
1)=2x^2+x-6x-3=2x^2-5x-3
2)=20a^2+24ab-35ab-42b^2=20a^2-11ab-42b^2
3)=y^3+y^2-8y+2y^2+2y-16=y^3+3y^2-6y-16
4)a^2+14a+49
5)9x^2-24xy+16y^2
6)m^2+6m-6m-36=m^2-36
7)40ab-25a^2+64b^2-40ab=-25a^+64b^2
8)
Второе задание:
1)6a^2-10a-(a^2-7a-3a+21)=6a^2-10a-a^2+7a+3a-21=5a^2-21
2)x^2-6x+9-(x^2-4x-x+4)+x^2+2x-2x-4=x^2-6x+9-x^2+4x+x-4+x^2+2x-2x-4=x^2-x+1
Третье задание:
1)2x^2+14x-3x-21=2x^2+3x-8x-12+3
2x^2+14x-3x-21-2x^2-3x+8x+12-3=0
16x-12=0
16x=12
x=3/4=0,75
2)6y^2+2y-9y-3+2(y^2+5y-5y-25)=2(1-4y+4y^2)+6y
6y^2+2y-9y-3+2y^2+10y-10y-50=2-8y+8y^2+6y
6y^2+2y-9y-3+2y^2+10y-10y-50-2+8y-8y^2-6y=0
-5y-55=0
-5y=55
y=-11
Четвертое задание:
1)=5a(a-4b)
2)=7x^3(1-2x^2)
3)
Пятое задание:
1)4x^2-12x=0
D=(−12)^2−4·4·0=144−0=144=12
x1=-(-12)+12/2*4=24/8=3
X2=-(-12)-12/2*4=0/8=0
2)x^2-2x+5x-10=0
x^2+3x-10=0
D=3^2−4·1·(−10)=9+40=49=7
x1=-3+7/2*1=4/2=2
x2=-3-7/2*1=-10/2=-5
Седьмое задание:
1)3a-3b+ax-bx=3(a-b)+x(a-b)=(3+x)(a-b)
2)a^2+2ab+b^2+3a+3b=(a+b)(a+b)+3(a+b)
3)
cheshirsky-kot
Бино́м Нью́то́на — формула для разложения на отдельные слагаемые целой неотрицательной степени суммы двух переменных, имеющая вид

(
a
+
b
)
n
=

k
=
0
n
(
n
k
)
a
n

k
b
k
=
(
n
0
)
a
n
+
(
n
1
)
a
n

1
b
+

+
(
n
k
)
a
n

k
b
k
+

+
(
n
n
)
b
n
(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n - k} b^k = {n\choose 0}a^n + {n\choose 1}a^{n - 1}b + \dots + {n\choose k}a^{n - k}b^k + \dots + {n\choose n}b^n
где
(
n
k
)
=
n
!
k
!
(
n

k
)
!
=
C
n
k
{n\choose k}=\frac{n!}{k!(n - k)!}= C_n^k — биномиальные коэффициенты,
n
n — неотрицательное целое число.

В таком виде эта формула была известна ещё индийским и персидским математикам; Ньютон вывел формулу бинома Ньютона для более общего случая, когда показатель степени — произвольное действительное (или даже комплексное) число.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найдите аn и d арифметической прогрессии, у которой:1) а1 = 40, n = 20, S20 = -40; 2) а1 = 1/3, n = 16, S16= -10 2/33) а =-4, n=11, S11=231.​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

ivanov568
lawyer-2019
olgakuz00261
Daniil1945
Лебедев972
Korneeva1856
Vasilevskii
di-bobkov1985
AlidzhanovDenis491
Vladimirovna
fetisov68av
Designer
tershova
kettikis
Эдгеева219