1) пусть х кг - вес третьего слитка, у кг - вес меди в третьем слитке.
по условию в 1-ом слитке 48% меди, тогда 4·0,9 = __ (кг) - чистой меди в первом слитке.
по условию во 2-ом слитке тоже 30% меди, тогда 9·0,9 = __ (кг) - чистой меди во втором слитке.
2) если первый слиток сплавили с третьим, то вес получившегося слитка равен (4 + х) кг, а количество в нём меди - + у) кг.
по условию содержание меди при этом получилось равным 48%.
3) если второй слиток сплавить с третьим, то вес получившегося слитка равен (9 + х) кг, а количество в нём меди - (0,81 + у) кг.
по условию содержание меди при этом получилось равным 36%.
4)сложив почленно обе части уравнения, получим, что
__ кг - вес третьего слитка
__ кг меди в третьем слитке
5) найдём процентное содержание меди в третьем слитке:
% меди в третьем слитке.
ответ: __ %.
Поделитесь своими знаниями, ответьте на вопрос:
Сколько решений имеет система(линейных уравнений): a) 2x-2y=1 6x-6y=3 b) 2y-4x=8 -2x+y=1 c) 2x+y=-3 3x+y=1 ответьте в форме: а) имеет одно решение b) не имеет решений и.т.п Заранее
ответ:
разделим на 2 каждый член уравнения
\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cos x =\frac{\sqrt{2}}{2}
2
3
sinx+
2
1
cosx=
2
2
\begin{lgathered}\frac{\sqrt{3}}{2}=cos{\frac{\pi}{6}}\\ \frac{1}{2}=sin{\frac{\pi}{6}}\\ sin(x+\frac{\pi}{6})=\frac{\sqrt{2}}{2}\\ x+\frac{\pi}{6} = \frac{\pi}{4}+2\pi n\\ x= -\frac{\pi}{6} + \frac{\pi}{4}+2\pi n\\ x = \frac{\pi}{12}+2\pi n\\ \\ x+\frac{\pi}{6} = \pi-\frac{\pi}{4}+2\pi n\\ x+\frac{\pi}{6} = \frac{3\pi}{4}+2\pi n\\ x=-\frac{\pi}{6} + \frac{3\pi}{4}+2\pi n\\ x = \frac{7\pi}{12}+2\pi {lgathered}
2
3
=cos
6
π
2
1
=sin
6
π
sin(x+
6
π
)=
2
2
x+
6
π
=
4
π
+2πn
x=−
6
π
+
4
π
+2πn
x=
12
π
+2πn
x+
6
π
=π−
4
π
+2πn
x+
6
π
=
4
3π
+2πn
x=−
6
π
+
4
3π
+2πn
x=
12
7π
+2πn