Roman343247
?>

Два туристи пройшли шлях від пункту а до пункту В перший турист пройщов половину шляху зі швидкістю 4км\год, а другу половину 5 км\год другий же турист пройшов першу половину шляху зі швидкістю 6 км\год а другу половину зі швидкістю 3 км\год хто з них швидше подолав шлях між пунктами

Алгебра

Ответы

Гарик383

Объяснение:

Принимаем путь от пункта А до пункта В за единицу (1).   ⇒

Первый турист на весь путь потратил:

\frac{0,5}{4} +\frac{0,5}{5} =\frac{5*0,5+4*0,5}{20}=\frac{0,5*(5+4)}{20} =\frac{0,5*9}{20} =\frac{4,5}{20}=0,225 часа=13.5 минут.

Второй турист на весь путь потратил:

\frac{0,5}{6} +\frac{0,5}{3}=\frac{0,5+2*0,5}{6} =\frac{0,5+1}{6}=\frac{1,5}{6}=0,25 часа=15 минут.      ⇒

ответ: первый турист весь путь быстрее.

Диана-Николаевна377

Відповідь:

Пояснення: Позначимо через 1 весь шлях, який мали пройти туристи. Розглядаємо умову про першого туриста: 1/2 км пройшов за 4 км/год, тоді відомо, що S=vt, де S- шлях, v - швидкість, t-час. -> t=S/v -> t_1=1/8 год=7.5 хв - час, який затратив перший турист на половину дороги. Аналогічно, на другу половину він затратив t_2=1/10=6 хв. Тобто весь час, який він затратив буде 7+6=13 хв

Так само рахуємо і для двох половинок другого туриста: t_3=1/12год=5 хв, t_4=1/6 год = 10 хв . В резкльтаті весь час 15 хв.

Порівняємо час першого і другого -> перший прийшов швидше

Chernaya
Разложение левой части уравнения на множители.

Решим уравнение

х2 + 10х - 24 = 0.

Разложим левую часть на множители:

х2 + 10х - 24 = х2 + 12х - 2х - 24 = х(х + 12) - 2(х + 12) = (х + 12)(х - 2).

Следовательно, уравнение можно переписать так:

(х + 12)(х - 2) = 0

Так как произведение равно нулю, то, по крайней мере, один из его множителей равен нулю. Поэтому левая часть уравнения обращается нуль при х = 2, а также при х = - 12. Это означает, что число 2 и - 12 являются корнями уравнения х2 + 10х Метод выделения полного квадрата.

Решим уравнение х2 + 6х - 7 = 0.

Выделим в левой части полный квадрат.

Для этого запишем выражение х2 + 6х в следующем виде:

 

х2 + 6х = х2 + 2• х • 3.

В полученном выражении первое слагаемое - квадрат числа х, а второе - удвоенное произведение х на 3. По этому чтобы получить полный квадрат, нужно прибавить 32, так как

х2 + 2• х • 3 + 32 = (х + 3)2.

Преобразуем теперь левую часть уравнения

х2 + 6х - 7 = 0,

прибавляя к ней и вычитая 32. Имеем:

х2 + 6х - 7 = х2 + 2• х • 3 + 32 - 32 - 7 = (х + 3)2 - 9 - 7 = (х + 3)2 - 16.

Таким образом, данное уравнение можно записать так:

(х + 3)2 - 16 =0, (х + 3)2 = 16.

Следовательно, х + 3 - 4 = 0, х1 = 1, или х + 3 = -4, х Решение квадратных уравнений по формуле.

Умножим обе части уравнения

ах2 + bх + с = 0, а ≠ 0

на 4а и последовательно имеем:

4а2х2 + 4аbх + 4ас = 0,

((2ах)2 + 2ах • b + b2) - b2 + 4ac = 0,

(2ax + b)2 = b2 - 4ac,

2ax + b = ± √ b2 - 4ac,

2ax = - b ± √ b2 - 4ac,

Примеры.

а) Решим уравнение: 4х2 + 7х + 3 = 0.

а = 4, b = 7, с = 3, D = b2 - 4ac = 72 - 4 • 4 • 3 = 49 - 48 = 1,

D > 0, два разных корня;

 

Таким образом, в случае положительного дискриминанта, т.е. при

b2 - 4ac >0 , уравнение ах2 + bх + с = 0 имеет два различных корня.

 

б) Решим уравнение: 4х2 - 4х + 1 = 0,

а = 4, b = - 4, с = 1, D = b2 - 4ac = (-4)2 - 4 • 4 • 1= 16 - 16 = 0,

D = 0, один корень;

Итак, если дискриминант равен нулю, т.е. b2 - 4ac = 0, то уравнение

ах2 + bх + с = 0 имеет единственный корень,

 

в) Решим уравнение: 2х2 + 3х + 4 = 0,

а = 2, b = 3, с = 4, D = b2 - 4ac = 32 - 4 • 2 • 4 = 9 - 32 = - 13 , D < 0.

Данное уравнение корней не имеет.

Итак, если дискриминант отрицателен, т.е. b2 - 4ac < 0,

уравнение ах2 + bх + с = 0 не имеет корней.

Формула (1) корней квадратного уравнения ах2 + bх + с = 0 позволяет найти корни любого квадратного уравнения (если они есть), в том числе приведенного и неполного. Словесно формула (1) выражается так: корни квадратного уравнения равны дроби, числитель которой равен второму коэффициенту, взятому с противоположным знаком, плюс минус корень квадратный из квадрата этого коэффициента без учетверенного произведения первого коэффициента на свободный член, а знаменатель есть удвоенный первый коэффициент Решение уравнений с использованием теоремы Виета.

Как известно, приведенное квадратное уравнение имеет вид

 

х2 + px + c = 0. (1)

Его корни удовлетворяют теореме Виета, которая при а =1 имеет вид

x1 x2 = q,

x1 +x2 = - p

Отсюда можно сделать следующие выводы (по коэффициентам p и q можно предсказать знаки корней).

а) Если сводный член q приведенного уравнения (1) положителен (q > 0), то уравнение имеет два одинаковых по знаку корня и это зависти от второго коэффициента p. Если р < 0, то оба корня отрицательны, если р < 0, то оба корня положительны.

Например,

x2 – 3x + 2 = 0; x1 = 2 и x2 = 1, так как q = 2 > 0 и p = - 3 < 0;

x2 + 8x + 7 = 0; x1 = - 7 и x2 = - 1, так как q = 7 > 0 и p= 8 > 0.

б) Если свободный член q приведенного уравнения (1) отрицателен (q < 0), то уравнение имеет два различных по знаку корня, причем больший по модулю корень будет положителен, если p < 0 , или отрицателен, если p > 0 .

Например,

x2 + 4x – 5 = 0; x1 = - 5 и x2 = 1, так как q= - 5 < 0 и p = 4 > 0;

x2 – 8x – 9 = 0; x1 = 9 и x2 = - 1, так как q = - 9 < 0 и p = - 8 < 0.

Объяснение:

Прочитай это, потом поймёшь.

gbg231940

Объяснение: Щоб знайти найбільше і найменше значення функції на відрізку, треба

а) знайти максимуми і мінімуми функції на цьому відрізку. Для цього беруть похідну і прирівнюють її до 0. Рішення  і є критичними точками.

б) знайти значення функції на кінцях відрізку.

в) вибрати найбільше і найменше значення функції.

3. а) g'(x)=(-x²+6x-1)'= -2x+6

       g'(x)=0, -2x+6=0, -2x=-6, x=3

       g(3)= -3²+6·3-1=-9+18-1=8, g(3)=8

  б) [2;4]

       g(2)=-2²+6·2-1=-4+12-1=7, g(2)=7

       g(4)=-4²+6·4-1=-16+24-1=7, g(4)=7

   в) Найбільше значення функції g(3)=8

       Найменше значення функції g(2)=7 і g(4Объяснение: Щоб знайти найбільше і найменше значення функції на відрізку, треба

а) знайти максимуми і мінімуми функції на цьому відрізку. Для цього беруть похідну і прирівнюють її до 0. Рішення  і є критичними точками.

б) знайти значення функції на кінцях відрізку.

в) вибрати найбільше і найменше значення функції.

3. а) g'(x)=(-x²+6x-1)'= -2x+6

       g'(x)=0, -2x+6=0, -2x=-6, x=3

       g(3)= -3²+6·3-1=-9+18-1=8, g(3)=8

  б) [2;4]

       g(2)=-2²+6·2-1=-4+12-1=7, g(2)=7

       g(4)=-4²+6·4-1=-16+24-1=7, g(4)=7

   в) Найбільше значення функції g(3)=8

       Найменше значення функції g(2)=7 і g(4)=7

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Два туристи пройшли шлях від пункту а до пункту В перший турист пройщов половину шляху зі швидкістю 4км\год, а другу половину 5 км\год другий же турист пройшов першу половину шляху зі швидкістю 6 км\год а другу половину зі швидкістю 3 км\год хто з них швидше подолав шлях між пунктами
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

eronch
mb9037479491
Busyashaa
ilyushin-e
zmlavra
Pastushenkoen
struev2003260
innaglobal21
РобертИрина
Popova838
fygasika
Sergei-Gradus199
zharovaleks
vardartem876
avakarica