1. у=4х-2
1)
х=0 у=4*0-2=-2
х=6 у=4*6-2=10
2)
у=0
4х-2=0
4х=2
х=0,5
у=2
4х-2=2
4х=4
х=1
2.
Пересечение с осью ОХ:
у=0
1,2х-24=0
1,2х=24
х=20
(20; 0)
Пересечение с осью ОУ:
х=0
у=1,2*0-24
у=-24
3. Поскольку оба графика линейные функции, то для построения достаточно 2х точек:
f(x)=-x+2
x y
0 2
1 1
g(x)=2x-1
x y
0 -1
2 3
1) Из графика видно, что точка пересечения (1; 1)
2) Из построенных графиков видно, что g(x)>f(x), при х>1.
4. График линейной функции имеет вид:
у=kx+b
a График проходит через точки (0; 0), (1; 1)
0=k*0+b ⇒b=0
1=k*1 ⇒k=1
у=х
б) Графиком является постоянная функция:
у=-2
в) График проходит через точки (0; 3) и (3;0)
3=0*k+b ⇒b=3
0=3k+b
3k=0-3
k=-1
y=-x+3
Поделитесь своими знаниями, ответьте на вопрос:
надо я буду каждому благодарен даю ( ) умоляю
b=+-2
Объяснение:
Пусть x1=a-один из корней уравнения, тогда второй корень x2=0,4 *a (40% от первого)
Тогда ,по теореме Виета :сумма корней равна второму члену взятому с противоположным знаком .
x1+x2=a+0,4*a =4,2b^2 -1,4
1,4*a=4,2b^2-1,4 (делим на 1,4 обе части уравнения)
1) a=3b^2-1 →a^2=(3b^2-1)^2= 9b^4-6b^2+1
Так же, по теореме Виета: произведение корней равно последнему члену.
x1*x2=a*0,4a=11,6b^2+2
0,4*a^2=11,6*b^2+2 (делим на 0,4 обе части уравнения)
2)a^2=29b^2+5
Подставляя 1 в 2 имеем:
9b^4-6b^2+1=29b^2+5
9b^4-35b^2-4=0 (биквадратное уравнение)
b^2=t>=0
9t^2 -35t-4=0
D=(-35)^2 - 4*9*(-4) =1225 +144=1369
√D=√1369=37
t=(35+-37)/18
t1=(35+37)/18=72/18=4
t2=(35-37)/18 <0 (не подходит)
b^2=4
b=+-2
Cделаем проверку: (b^2=4)
x^2 -(4,2*4-1,4)*x +11.6*4 +2=0
x^2-15,4*x +48,4=0
По теореме Виета:
a+0,4a=15,4
1,4a=15,4
a=15,4/1,4=11
x1=11 x2=0,4*11=4,4
x1*x2=11*4,4=48,4 (верно)
ответ: b=+-2