Для определения значения тригонометрической функции, найдите его на пересечении строки с указанием тригонометрической функции. Например, синус 30 градусов - ищем колонку с заголовком sin (синус) и находим пересечение этой колонки таблицы со строкой "30 градусов", на их пересечении считываем результат - одна вторая. Аналогично находим косинус 60 градусов, синус 60 градусов (еще раз, в пересечении колонки sin (синус) и строки 60 градусов находим значение sin 60 = √3/2 ) и т.д. Точно так же находятся значения синусов, косинусов и тангенсов других "популярных" углов.
Объяснение:
Arcsin(ctg(π/4))=arcsin(1)=π/ 2 cos(arcsin(-1/2)-arcsin(1))=cos(2π/3-π/2)= cos(4π/6-3π/6)=cos(π/6)=√3/2.
Поделитесь своими знаниями, ответьте на вопрос:
552. Решите неравенство а) x < 25; г) 0, 5х2 > 13;б) 0, 02x < 2; д) 2x < 3x;в) x > 10; е) -2x < 7x;ж) 2x2 + 4 > 0;3) х2 + 10x + 27 > 0);и) х2 + 4х +7<0.
1) домножим левую и правую части на x. чтобы избавиться от дроби
3x^2 + 3 = 6x
3x^2 - 6x + 3 = 0
D = b^2 - 4ac = (-6)^2 - 4 *3 * 3 = 36 -36 = 0. [1 корень]
x= -b /2a = 6 / 6 =1
ответ: 1
2) приводим дроби к общему знаменателю
к первой дроби доп.множитель Х, ко второй (x^2 +2)
3x - (x^2 +2) -x^2 + 3x - 2
-->
x (x^2 + 2) x (x^2 + 2)
система:
{-x^2 + 3x - 2 = 0
{x (x^2 + 2) 0
-x^2 + 3x - 2 = 0
D = b^2 - 4ac = 9 - 8 = 1 2 корня
x1,2 = -b ± √D / 2a
x1 = -3 + 1 /-2 = -2/-2 = 1
x2 = -3 -1 / -2 = -4/-2 = 2
ответ: 1;2
фото прикреплю, так легче