Голубева1440
?>

Выберите уравнение, корнем которого является число -2 1) 2x+(x+1)=3 2) 2x(в кВ)=4 3)(x+2)(x-3)=0 4) 2x-1 x+1 ——- = —- 2x x+2

Алгебра

Ответы

rabchek145200614

3

Объяснение:

(x+2)(x-3)=0

x+2=0 или x-3=0

x1 = -2

x2 = 3

ответ: -2; 3, значит третье уравнение.

Вячеславовна_Сагитович

3)(x+2)(x-3)=0

Объяснение:

(x+2)(x-3)=0

x+2=0  x-3=0

x=-2     x=3 (не удовл. условию)

ответ; x=-2

Kochinev7

пример.рассмотрим следующую линейную функцию: y = 5x – 3.

1) d(y) = r;

2) e(y) = r;

3) функция общего вида;

4) непериодическая;

5) точки пересечения с осями координат:

ox:   5x – 3 = 0, x = 3/5, следовательно (3/5; 0) – точка пересечения с осью абсцисс.

oy:   y = -3, следовательно (0; -3) – точка пересечения с осью ординат;

6) y = 5x – 3 – положительна при x из (3/5; +∞),

y = 5x – 3 – отрицательна при x   из (-∞; 3/5);

7) y = 5x – 3 возрастает на всей области определения; линейной функцией называется функция вида y = kx + b, заданная на множестве всех действительных чисел. здесь k – угловой коэффициент (действительное число), b – свободный член (действительное число), x – независимая переменная.

в частном случае, если k = 0, получим постоянную функцию y = b, график которой есть прямая, параллельная оси ox, проходящая через точку с координатами (0; b).

если b = 0, то получим функцию y = kx, которая является прямой пропорциональностью.

смысл коэффициента b – длина отрезка, который отсекает прямая по оси oy, считая от начала координат.

смысл коэффициента k – угол наклона прямой к положительному направлению оси ox, считается против часовой стрелки.

свойства линейной функции:

1) область определения линейной функции есть вся вещественная ось;

2) если k ≠ 0, то область значений линейной функции есть вся вещественная ось. если k = 0, то область значений линейной функции состоит из числа b;

3) четность и нечетность линейной функции зависят от значений коэффициентов k и b.

a) b ≠ 0, k = 0, следовательно, y = b – четная;

b) b = 0, k ≠ 0, следовательно y = kx – нечетная;

c) b ≠ 0, k ≠ 0, следовательно y = kx + b – функция общего вида;

d) b = 0, k = 0, следовательно y = 0 – как четная, так и нечетная функция.

4) свойством периодичности линейная функция не обладает;

5) точки пересечения с осями координат:

ox:   y = kx + b = 0, x = -b/k, следовательно (-b/k; 0) – точка пересечения с осью абсцисс.

oy:   y = 0k + b = b, следовательно (0; b) – точка пересечения с осью ординат.

замечание.если b = 0 и k = 0, то функция y = 0 обращается в ноль при любом значении переменной х. если b ≠ 0 и k = 0, то функция y = b не обращается в ноль ни при каких значениях переменной х.

6) промежутки знакопостоянства зависят от коэффициента k.

a) k > 0;   kx + b > 0, kx > -b, x > -b/k.

y = kx + b – положительна при x   из (-b/k; +∞),

y = kx + b – отрицательна при x   из (-∞; -b/k).

b) k < 0; kx + b < 0, kx < -b, x < -b/k.

y = kx + b – положительна при x   из (-∞; -b/k),

y = kx + b – отрицательна при x   из (-b/k; +∞).

c) k = 0, b > 0; y = kx + b положительна на всей области определения,

k = 0, b < 0; y = kx + b отрицательна на всей области определения.

7) промежутки монотонности линейной функции зависят от коэффициента k.

k > 0, следовательно y = kx + b возрастает на всей области определения,

k < 0, следовательно y = kx + b убывает на всей области определения.

8) графиком линейной функции является прямая. для построения прямой достаточно знать две точки. положение прямой на координатной плоскости зависит от значений коэффициентов k и b. 

goldenshtein33333

x ∈{-2} ∪ [2;7]

Объяснение:

1)  Найдём нули функции у₁ = х²-5х-14:

х²-5х-14 = 0

х₁,₂ = 5/2 ± √(25/4 +14) = 5/2 ± √(81/4) = 5/2 ± 9/2

х₁ = 5/2 + 9/2 = 14/2 = 7

х₂ = 5/2 - 9/2 = - 4/2 = -2

Графиком функции у₁ = х²-5х-14 является парабола, ветви которой направлены вверх; следовательно, у₁ = х²-5х-14 ≤0 на участке

x ∈ [-2; 7].

2) Неравенство х² ≥ 4 эквивалентно неравенству: х²- 4 ≥ 0.

Найдём нули функции у₂ =х²- 4:

х²- 4 = 0

х² = 4

х = ± √4

х₃ = - 2

х₄ = 2

Графиком функции у₂ = х²- 4 является парабола, ветви которой направлены вверх; функция у₂ = х²- 4 больше или равна нулю на участках:

x ∈(-∞; -2] ∪ [2;+∞)

3) Объединяем полученные решения, для чего на числовой оси отмечаем точки х₂ = -2; х₃ = -2;  х₄ = 2; х₁ = 7 и находим перекрываемые области значений, одновременно удовлетворяющие неравенству х²-5х-14 ≤ 0 и неравенству х² ≥ 4:

x ∈{-2} ∪ [2;7]

ответ: x ∈{-2} ∪ [2;7]

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Выберите уравнение, корнем которого является число -2 1) 2x+(x+1)=3 2) 2x(в кВ)=4 3)(x+2)(x-3)=0 4) 2x-1 x+1 ——- = —- 2x x+2
Ваше имя (никнейм)*
Email*
Комментарий*