nataliaprintroll
?>

(x+6)^3*(x-5)^2 /(x-2)*(x+4)<=0 решите неравенство ОЧЕНЬ НУЖНО ​

Алгебра

Ответы

mvolkov8

1) Число корней квадратного уравнения можно определить при дискриминанта. Если D=0, то уравнение имеет один корень, если D>0, то уравнение имеет два корня, если D<0, то уравнение действительных корней не имеет.

а) 9х²+12х+4=0

D = 12²-4*9*4 = 144-144 = 0 = 0 ⇒ уравнение имеет один корень.

б) 2х²+3х-11=0

D = 3²-4*4*(-11) = 9+176 = 185 > 0 ⇒ уравнение имеет два корня.

2) а) х²-14+33=0

Уравнение приведенное, проще всего использовать теорему Виета.

х₁*х₂=33

х₁+х₂=14

Отсюда х₁=11, х₂=3

ответ: х₁=11, х₂=3

б) -3х²+10х-3=0

D = 10²-4*(-3)*(-3) = 100-36 = 64

x_1=\frac{-10+8}{2*(-3)}=\frac{-2}{-6}=\frac{1}{3}\\ \\x_2=\frac{-10-8}{2*(-3)}=\frac{-18}{-6}=3

ответ: х₁=1/3, х₂=3

в) х⁴-10х²+9=0

Биквадратное уравнение решим при замены.

х²=t

t²-10t+9=0

По теореме Виета:

t₁*t₂=9

t₁+t₂=10

t₁=9, t₂=1

Производим обратную замену.

х²=9 ⇒ х = ±√9 ⇒ х=±3

х²=1 ⇒ х = ±√1 ⇒ х=±1

ответ: х₁,₂ = ±3, х₃,₄ = ±1.

г) х²+10+22=0

D = 10²-4*1*22 = 100-88 = 12

x_1=\frac{-10+\sqrt{12}}{2}= \frac{-10+2\sqrt{3}}{2}=\frac{-10}{2}+\frac{2\sqrt{3}}{2}=-5+\sqrt{3}\\ \\ x_1=\frac{-10-2\sqrt{3}}{2}=\frac{-10}{2}-\frac{2\sqrt{3}}{2}=-5-\sqrt{3}

ответ: х₁=-5+√3, х₂=-5-√3

д) х²-110х+216=0

По теореме Виета:

х₁*х₂=216

х₁+х₂=110

х₁ = 108, х₂ = 2

ответ: х₁ = 108, х₂ = 2

3) Пусть одна сторона прямоугольника равна х см. Вторая сторона на 9 см больше первой, поэтому она равна (х+9) см. Площадь прямоугольника 112 см² (по условию). Она находится как произведение смежных сторон прямоугольника.

Составляем уравнение.

х*(х+9) = 112

х²+9х-112 = 0

D = 9²+4*1*112 = 81+448 = 529

x_1=\frac{-9+23}{2}=7\\ \\x_2=\frac{-9-23}{2}=-16

Длина отрицательной быть не может, поэтому нам подходит только один корень: 7

Длина одной стороны прямоугольника 7 см.

Длина второй стороны прямоугольника х+9=7+9=16 см.

ответ: 7 см, 16 см.

4)

\frac{10}{25-x^2}-\frac{1}{5+x}-\frac{x}{x-5}=0\\\\\frac{10}{(5-x)(5+x)}-\frac{1}{5+x}-\frac{x}{-(5-x)}=0\\\\\frac{10}{(5-x)(5+x)}-\frac{1^{(5-x}}{5+x}+\frac{x^{(5+x}}{5-x}=0\\\\\frac{10-(5-x)+x(5+x)}{(5-x)(5+x)} =0\\\\\frac{10-5+x+5x+x^2}{(5-x)(5+x)} =0\\\\\frac{x^2+6x+5}{(5-x)(5+x)} =0

ОДЗ: (5-х)(5+х)≠0 ⇒ х≠5, х≠-5.

х²+6х+5=0

По теореме Виета:

х₁*х₂=5

х₁+х₂=-6

х₁ = 5, х₂ = 1

х₁ = 5 - не удовлетворяет ОДЗ.

ответ: х=1

5) 4х²+рх+9=0

Квадратное уравнение имеет один корень, если дискриминант равен нулю. Найдем дискриминант и приравняем его к нулю. Затем решим получившееся уравнение и тем самым найдем значения р.

D = р²-4*4*9 = р²-144

р²-144 = 0

р²=144

р = ±√144

р= ±12

ответ: р= ±12

КараханянКусков
Объем работы  - 1
I рабочий :
Время  на выполнение работы- х
Производительность  -  (1/х) 
II рабочий:
Время  - (х+4)
Производительность  -  1/ (х+4)
Уравнение:
2 *  (1/х) + 3 * (1/(х+4) = 1/2
2/х   +  3/(х+4) = 1/2
2*2 *(х+4) + 3*2*х = 1  * х *(х+4)
4х+16 + 6х=х²+4х
10х+16-х²-4х= 0
-х²+6х+16=0
D= 36-4*(-1)*16= 36+64=100
D>0  - два корня
х₁= (-6+10)  / (2*(-1)) = -2  - не удовлетворяет условию задачи
х₂= (-6-10)/2 *(-1) = (-16) / (-2) = 8  часов -   I рабочий
8+4 = 12 часов  - II рабочий

ответ:  за 8 часов выполнит задание I рабочий самостоятельно ,  
за 12 часов  - II рабочий .

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

(x+6)^3*(x-5)^2 /(x-2)*(x+4)<=0 решите неравенство ОЧЕНЬ НУЖНО ​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Dimston134877
Klochkov malakhov1974
armusaeff
Пономаренко
shajmasha
gdmaslo
dariagromova54
yuraotradnov
yelenaSmiryagin
Golubitskaya378
Gstoremsk62
Test Станислав
Zhilinoe134
tanya62soldatova72
Adassa00441