Обозначим всю работу за 1 Пусть первая выполняет за час х , вторая выполняет за час у. Вместе они за час выполняют (х+у). За четыре часа 4·(х+у) Что и равно все работе,т. е 1 4(х+у)=1 Если же половину работы выполнит первая машинистка,а остаток- тоже половину вторая , то вся работа может быть напечатана за 9 часов. Решаем систему
Вторая система ответов не удовлетворяет условию, потому как по условию вторая машинистка работает менее эффективно. (в системе же 5/24 больше чем 1/24)
Значит первая за час выполняет 1/6 часть всей работы, а всю работу выполняет за 6 часов. Вторая за час выполняет 1/12 часть всей работы, а всю работу выполняет за 12 часов
Светлана-Тигран
03.02.2023
Первое что мы делаем, мы берем производные: (1) у’ = 6х^2 -6х (2)у’ = 3х^2 -12х + 12
Потом мы эти выражения приравниваем к 0: (1) х(6х - 6) = 0 х = 0 - критические точки х = 1 - критические точки
Далее, исследуем знак производной слева и справа от точек, чтобы понять, где максимум а где минимум: (1) Слева от 0 у нас + , а справа - . Справа от 1 у нас + ответ 1-го уравнения: 0- max ; 1 - min ответ 2-го уравнения : 2 - min
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Реши графически систему уравнений: {y=2x+1y=−2x−3 ответ (записать координаты точки пересечения или слово «нет»): {x= y=
Пусть первая выполняет за час х , вторая выполняет за час у.
Вместе они за час выполняют (х+у).
За четыре часа 4·(х+у) Что и равно все работе,т. е 1
4(х+у)=1
Если же половину работы выполнит первая машинистка,а остаток- тоже половину вторая , то вся работа может быть напечатана за 9 часов.
Решаем систему
Вторая система ответов не удовлетворяет условию, потому как по условию вторая машинистка работает менее эффективно. (в системе же 5/24 больше чем 1/24)
Значит первая за час выполняет 1/6 часть всей работы, а всю работу выполняет за 6 часов.
Вторая за час выполняет 1/12 часть всей работы, а всю работу выполняет за 12 часов