пусть а - сторона основания, а l - апофема, тогда формула площади поверхности конуса равна
Подставим вместо а и S их значения и найдем апофему l
Через апофему проведем сечение пирамиды. В сечении получаем равнобедренный треугольник, основание которого равно стороне а=5, а боковые стороны апофеме l=6. Угол между боковой стороной треугольника и его основанием и есть угол наклона боковой грани пирамиды к плоскости основания. Найдем его, проведем высоту в равнобедренном треугольнике к его основанию. Высота равнобедренного треугольника, проведенная к основанию является так же его биссектрисо и медианой. Поэтому она делит равнобедренный треугольник на два равных прямоугольных треугольника. Найдем косинус искомого угла из прямоугольного треугольника.
Cos A=2,5/6=25/60=5/12 Отсюда следует, что угол наклона боковой грани к плоскости основания пирамиды равен arccos (5/12)
Поделитесь своими знаниями, ответьте на вопрос:
Чему равен центральный угол, если соответствующий ему вписанный угол равен 44, 6°? ответ: ∡ FOE =
Пусть оно является рациональным числом.
Тогда его можно представить в виде m/n, где m ∈ Z, n ∈ N и дробь несократимая.
Возведя в квадрат, получаем, что 17 = m²/n²
Тогда 17n² = m²
Чтобы равенство было верным, необходимо, чтобы m ⋮ 17 тогда и n ⋮ 17, иначе данное равенство будет неверным, т.к. 17 - простое число.
Тогда дробь m/n будет сократимой, т.к. и числитель, и знаменатель кратны 17. Но это невозможно, поэтому дробь вида (m/n)² = 17 не существует ⇒ число 17 не может являться квадратом рационального числа, т.е. √17 - иррациональное число.