mgrunova
?>

Представьте выражение а^-3: а^9 в виде степени с основанием а

Алгебра

Ответы

Aleks0091

короче -3-9=-12

значит показатель =-12

а^(-12) -ответ

Lidburg

ответ: функция z имеет минимум, равный 2, в точке М(1;1).

Объяснение:

Пишем уравнение связи в виде g(x,y)=x+y-2=0 и составляем функцию Лагранжа L=z+a*g=1/x+1/y+a*(x+y-2), где a - множитель Лагранжа. Находим частные производные dL/dx и dL/dy: dL/dx=-1/x²+a, dL/dy=-1/y²*a и составляем систему из трёх уравнений:

-1/x²+a=0

-1/y²+a=0

a*(x+y-2)=0

Решая её, находим a=1, x=y=1. Таким образом, найдена единственная стационарная точка M(1;1). Теперь проверим, выполняется ли достаточное условие экстремума. Для этого находим вторые частные производные: d²L/dx²=2/x³; d²L/dxdy=0, d²L/dy²=2/y³ Вычисляем значение найденных производных в точке М: A=d²L/dx²(M)=2, B=d²L/dxdy(M)=0, C=d²L/dy²(M)=2 и составляем дифференциал 2-го порядка: d²L=A*(dx)²+2*B*dx*dy+C*(dy)²=2*dx²+2*dy²>0, поэтому функция z в точке М имеет минимум, равный zmin=1/1+1/1=2.

Николаевич1033
Как я понял: 3х -4 - это основание логарифма; а + 9х +5 - это выражение под знаком логарифма.
Сначала ОДЗ: а +9x +5 > 0   ,    x > (-5 -a )/9
                         3x - 4 > 0             x > 4/3
                         3x -4 ≠ 1              x ≠ 5/3
теперь решаем. по определению логарифма:
  а + 9х +5 = (3х - 4)⁻¹
а + 9х + 5 = 1/(3х -4) |* (3х -4)
(3х - 4)(а + 9х +5) = 1
3ах +27х² +15х - 4а -36х -20 -1 = 0
27х² -3х(а -7) -21 = 0
9х² - х(а - 7) -7 = 0
Чтобы квадратное уравнение имело единственный корень,
Ещё понять бы что за промежуток в условии...необходимо, чтобы D= 0
D = b² - 4ac = (a - 7)² - 4*9*(-7) = a² -14a + 49 + 252= a² -14a + 301
a² -14a + 301 = 0  нет решений.
Это значит, что дискриминант ≠ 0
Т.е. данное уравнение имеет два корня.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Представьте выражение а^-3: а^9 в виде степени с основанием а
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

igorshevkun
svetlana-ladyga
evainvest1
stic1995
anyakru94
Arsen0708
dpolkovnikov
Sergeevich-Novikov
stepa19806966
Kuznetsova702
Anastasiya81
bchukhraev79
puma802
leonid-adv70
vasilevam