Пусть дан т-к АВС.
Продлим медианы на их длину ( см. рис)
По свойству диагоналей параллелограмма
АА1²+ВС²=2(АВ²+АС²)
и
СС1²+АВ²=2(АС²+ВС²)
Пусть АВ=с, ВС=а
Составим систему уравнений:
[(2*6√7)²+a²=2(c²+14²)
[(2*3√7)²+c²=2(14²+a²)
⇒
[ а²-2с²=2*14² -144*7
[-2а²+с²=2*14²-36*7 домножим на 2 обе стороны этого уравнения.
Сложим уравнения системы:
[а²-2с=2*14² -144*7
[-4а²+2с²=4*14²-72*7
-3а²=6*14²-216*7⇒
а²=112
а=4√7
Подставим найденное значение а в уравнение
а²-2с²=2*14² -144*7 ⇒
112+144*7-2*196=2 с²
с²=364
с=2√91
АВ=2√91
ВС=4√7
---------
Задачу можно решить по т. косинусов.
Медианы треугольника точкой пересечения делятся в отношении 2:1, считая от вершины.
Тогда АО=4√7, CO=2√7
Из ∆ АОС
АС²=АО²+СО²-2*АО*СО*cos ∠АОС
cos ∠АОС=(АС²-АО²+СО²):(-2*АО*СО)
cos ∠АОС=[14²-(4√7)²-(2√7)²]:[-2*(4√7)*(2√7]
cos ∠АОС= -56:2*56= -1/2 - это косинус 120º
В ∆ СОК ∠ СОК =180°-120°=60°
ОК=АК:3=2√7
ОК=ОС, угол СОК=60°⇒
∆ СОК - правильный, СК=2√7,
ВС=2 СК=4√7
В Δ АМО ∠ МОА=∠ СОК=60°
АМ²=МО+АО-2*МО*АО*cos∠АОМ
АМ²=(√7)²+(4√7)²-2*(√7)*(4√7)*1/2*cos∠АОМ
АМ²=7+16*7-2*4*7*1/2
АМ²=91
АМ=√91
AB=2√91
Поделитесь своими знаниями, ответьте на вопрос:
Решить уравнение sin x + корень3 cos x = - корень2
Решаем две системы
решение системы предполагает рассмотрение двух случаев
а) при (5х-9)>1 логарифмическая функция возрастает, большему значению аргумента соответствует большее значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным, получаем систему четырех неравенств:
20-11х≥0;
5x-9>1;
х²-4х+5≤1;
х²-4х+5>0.
Решение каждого неравенства системы:
х≤20/11
х>1,8
х=2
х- любое
О т в е т. 1а) система не имеет решений.
б) при 0<(5х-9)<1 логарифмическая функция убывает, большему значению аргумента соответствует меньшее значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным, получаем систему четырех неравенств:
20-11х≥0
0<5x-9<1
х²-4х+5≥1
х²-4х+5>0
Решение
х≤20/11
0<х<1,8
х-любое (так как х²-4х+4≥0 при любом х)
х- любое
Решение системы 1б) 0<x<1,8, так как (20/11) >1,8
О т в е т. 1)0<x<1,8
решение системы также предполагает рассмотрение двух случаев
а) при (5х-9)>1 логарифмическая функция возрастает, большему значению аргумента соответствует большее значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным, получаем систему четырех неравенств:
20-11х≤0
5x-9>1
х²-4х+5≥1
х²-4х+5>0
Решение
х≥20/11
х>1,8
х-любое
х- любое
О т в е т. 2 а) х≥20/11.
б) при 0<(5х-9)<1 логарифмическая функция убывает, большему значению аргумента соответствует меньшее значение функции и с учетом, того что под знаком логарифма выражение должно быть строго положительным, получаем систему четырех неравенств:
20-11х≤0
0<5x-9<1
х²-4х+5≤1
х²-4х+5>0
Решение
х≥20/11
0<х<1,8
х=2
х- любое
Решение системы 2б) нет решений
О т в е т. 2) х≥20/11
О т в е т. 0 < x < 1,8 ; x≥20/11
или х∈(0;1,8)U(1целая 9/11;+∞)