Здесь важна последняя цифра числа 1007. Т.к. число всё время умножается на само себя, то от последней цифры (7) зависит, какая будет последняя цифра числа, возведённого в степень. Проследим, на какую цифру оканчиваются несколько первых степеней числа 1007. Это легко сделать, потому что достаточно последнюю цифру умножать на 7.
Как видим, наблюдается циуличность через каждые 4 степени. Поэтому достаточно степень разделить на 4 и посмотреть, какой будет остаток. Если остаток равен 1, то на конце 7, если 2 - то 9, если 3 - то 3, если 0 - то 1. Делим 1025 на 4 получаем 256 и 1 в остатке. Следовательно, искомое число оканчивается на 7.
михаил
27.07.2020
1 x 2 17 x 2 ± 4x + 3 33 x 2 ± 7x + 12 2 x 2 – 1 18 x 2 ± 4x + 4 34 x 2 ± 8x 3 x 2 – 4 19 x 2 ± 4x – 5 35 x 2 ± 8x + 7 4 x 2 –9 20 x 2 ± 4x – 12 36 x 2 ± 8x – 9 5 x 2 ± x 21 x 2 ± 5x 37 x 2 ± 8x + 12 6 x 2 ± x – 2 22 x 2 ± 5x + 4 38 x 2 ± 9x 7 x 2 ± x – 6 23 x 2 ± 5x ± 6 39 x 2 ± 9x + 8 8 x 2 ± x – 12 24 x 2 ± 6x 40 x 2 ± 9x – 10 9 x 2 ± 2x 25 x 2 ± 6x + 5 41 x 2 ± 10x 10 x 2 ± 2x + 1 26 x 2 ± 6x – 7 42 x 2 ± 10x + 9 11 x 2 ± 2x – 3 27 x 2 ± 6x + 8 43 x 2 ± 10x – 11 12 x 2 ± 2x – 8 28 x 2 ± 6x + 9 44 x 2 ± 11x 13 x 2 ± 3x 29 x 2 ± 7x 45 x 2 ± 11x + 10 14 x 2 ± 3x – 4 30 x 2 ± 7x + 6 46 x 2 ± 11x – 12 15 x 2 ± 3x – 10 31 x 2 ± 7x – 8 47 x 2 ± 12x 16 x 2 ± 4x 32 x 2 ± 7x + 10 48 x 2 ± 12x + 11
Проследим, на какую цифру оканчиваются несколько первых степеней числа 1007. Это легко сделать, потому что достаточно последнюю цифру умножать на 7.
Как видим, наблюдается циуличность через каждые 4 степени. Поэтому достаточно степень разделить на 4 и посмотреть, какой будет остаток. Если остаток равен 1, то на конце 7, если 2 - то 9, если 3 - то 3, если 0 - то 1.
Делим 1025 на 4 получаем 256 и 1 в остатке. Следовательно, искомое число оканчивается на 7.