Найдите координаты точки пересечения графиков функций, заданных уравнениями: 4х-15у=21 и 6х+25у=22
можно нарисовать и увидеть, (если координаты точки пересечения "хорошие"), или просто решить систему уравнений 4х-15у=21 первое ур-е умножим на 3 12х-45у=63 6х+25у=22 второе ур-е умножим на 2 12х+50у=44
из 2-го вычтем 1-е 95y=-19 y=-19/95 y=(-1/5) тогда x=[21+15(-1/5)]/4 x=(9/2)
проверка 4(9/2)-15(-1/5)=21 18+3=21 верно и 6(9/2)+25(-1/5)=22 27-5=22 верно.
Координаты точки пересечения графиков функций, заданных уравнениями: 4х-15у=21 и 6х+25у=22 -
x=(9/2) y=(-1/5)
kon200182
23.04.2023
Похоже, последовательность задана такой формулой (типа "рекуррентной")
то есть,члены последовательности выражены через предыдущие члены а разность членов последовательности имеет вид
таким образом, каждый член последовательности представляет собой сумму n членов новой последовательности
Можно заметить, что этот член равен сумме первых n членов некоей геометрической прогрессии со знаменателем
А тут придется остановиться, так как непонятно, чему равен x (без индекса)???
Откуда взялась эта задача? Если можно, дай ссылку на источник.
можно нарисовать и увидеть, (если координаты точки пересечения "хорошие"), или просто решить систему уравнений
4х-15у=21 первое ур-е умножим на 3 12х-45у=63
6х+25у=22 второе ур-е умножим на 2 12х+50у=44
из 2-го вычтем 1-е 95y=-19 y=-19/95
y=(-1/5) тогда x=[21+15(-1/5)]/4 x=(9/2)
проверка
4(9/2)-15(-1/5)=21 18+3=21 верно
и 6(9/2)+25(-1/5)=22 27-5=22 верно.
Координаты точки пересечения графиков функций, заданных уравнениями: 4х-15у=21 и 6х+25у=22 -
x=(9/2) y=(-1/5)