Shevchenko
?>

Две семьи отправились на детский утренник. Первая семья купила два детских билета и один взрослый и всего заплатила 535 рублей. Вторая семья купила три детских билета и два взрослых и всего заплатила 925 рублей. Сколько стоит один детский билет и сколько стоит один взрослый билет?

Алгебра

Ответы

frdf57

Пусть детский билет стоит x руб, а взрослый y руб.

{ 2x + y = 535

{ 3x + 2y = 925

Из 2 уравнения вычитаем 1 уравнение

3x + 2y - 2x - y = 925 - 535

x + y = 390

Вычтем это уравнение из 1 уравнения

2x + y - x - y = 535 - 390

x = 145 руб. стоит детский билет.

y = 535 - 2x = 535 - 2*145 = 535 - 290  = 245 руб. стоит взрослый билет.

Объяснение:

lzelenyi5
Дано: sinx-siny=m; cosx+cosy=n. Найти: sin(x-y) и cos(x-y).
Решение:
1. Воспользуемся формулами разность синусов и сумма косинусов:
sinx-siny=2sin \frac{x-y}{2}cos \frac{x+y}{2}=m; cosx+cosy=2cos \frac{x+y}{2}cos \frac{x-y}{2}=n.
Заметим, что оба равенства содержат один и тот же член: cos \frac{x+y}{2}. Выразим его из обоих равенств:
cos \frac{x+y}{2}= \frac{m}{2sin \frac{x-y}{2}};cos \frac{x+y}{2}= \frac{n}{2cos \frac{x-y}{2}}.
В получившихся равенствах левые части равны, значит, равны и правые части:
\frac{m}{2sin \frac{x-y}{2}}= \frac{n}{2cos \frac{x-y}{2}}.
Преобразуем данное равенство:
\frac{2sin \frac{x-y}{2}}{2cos \frac{x-y}{2}}= \frac{m}{n};
\frac{sin \frac{x-y}{2}}{cos \frac{x-y}{2}}= \frac{m}{n};
( \frac{sin \frac{x-y}{2}}{cos \frac{x-y}{2}})^{2}=( \frac{m}{n})^{2};
\frac{sin^{2} \frac{x-y}{2}}{cos^{2} \frac{x-y}{2}}= \frac{m^{2}}{n^{2}};
Теперь используем формулы понижения степени синуса и косинуса:
\frac{1-cos(x-y)}{2}: \frac{1+cos(x-y)}{2}= \frac{m^{2}}{n^{2}};
Преобразуем данное равенство:
\frac{1-cos(x-y)}{1+cos(x-y)}= \frac{m^{2}}{n^{2}};
n²(1-cos(x-y))=m²(1+cos(x-y));
n²-n²cos(x-y)=m²+m²cos(x-y);
m²cos(x-y)+n²cos(x-y)=n²-m²;
cos(x-y)(m²+n²)=n²-m²;
cos(x-y)= \frac{n^{2}-m^{2}}{m^{2}+n^{2}}.
Используя основное тригонометрическое тождество, выразим sin(x-y):
sin(x-y)= \sqrt{1-( \frac{n^{2}-m^{2}}{m^{2}+n^{2}})^{2}}.
ответ: sin(x-y)= \sqrt{1-( \frac{n^{2}-m^{2}}{m^{2}+n^{2}})^{2}};cos(x-y)= \frac{n^{2}-m^{2}}{m^{2}+n^{2}}.
marinamarinyuk39
Рассуждаем следующим образом.
Чтобы А³ была нулевой матрицей, но чтобы при этом матрица А² не была нулевой, нужно чтобы в матрице А² все элементы кроме одного были равны нулю. Тогда в матрице А должны быть все элементы кроме двух равны нулю. Таким условиям отвечает, матрица, в которой, например два элемента находящихся на линии, параллельной главной диагонали, равны 1, а все остальные элементы матрицы равны нулю:
\left[\begin{array}{ccc}0&1&0\\0&0&1\\0&0&0\end{array}\right]
Или:
\left[\begin{array}{ccc}0&0&0\\1&0&0\\0&1&0\end{array}\right]
Тогда при возведении первой матрицы в квадрат получим матрицу:
\left[\begin{array}{ccc}0&0&1\\0&0&0\\0&0&0\end{array}\right]
А при возведении второй матрицы в квадрат получим:
\left[\begin{array}{ccc}0&0&0\\0&0&0\\1&0&0\end{array}\right]
А возведя в третью степень обе матрицы, получим нулевые матрицы.
ответ: \left[\begin{array}{ccc}0&1&0\\0&0&1\\0&0&0\end{array}\right]или\left[\begin{array}{ccc}0&0&0\\1&0&0\\0&1&0\end{array}\right]

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Две семьи отправились на детский утренник. Первая семья купила два детских билета и один взрослый и всего заплатила 535 рублей. Вторая семья купила три детских билета и два взрослых и всего заплатила 925 рублей. Сколько стоит один детский билет и сколько стоит один взрослый билет?
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Nataliefremova2015808
Мечиславович_Кварацхелия1988
denis302007
elaginaelena70
mashiga2632
Lvova_Aleksandr933
osherbinin
a60ikurgannikova
сергей1246
АртакСергеевич1723
burtsev3339
stperelyot7833
mv7095
viktort889841
Kubataeva Nikolaevich1389