Могу предложить следующее решение: Пусть х - скорость первого поезда, а у - скорость второго поезда, тогда первый поезд проехал весь путь за 270/х часов, а второй за 270/у часов, при этом он прибыл на 1ч 21 мин. (27/20) позже первого. Можно составить первое уравнение 270/y-270/x=27/20; 270(1/y-1/x)=27/20; 1/y-1/x=1/200 Поезда встретились через 3 часа, значит первый поезд до встречи ехал 3х км, а второй поезд ехал 3у км. Так как они двигались навстречу друг другу, то общее расстояние которое они проехали равно 270 км. Запишем второе уравнение 3х+3у=270 Можно 3 вынести за скобки: 3(х+у)=270; х+у=90 Составим систему 1/y-1/x=1/200 (x-y)/x*y=1/200 x-y=x*y/200 200(x-y)=x*y x+y=90 x=90-y x=90-y
200(90-y-y)=(90-y)*y 18000-400y=90y-y² y²-490y+18000=0 D=(-490)²-4*18000=240100-72000=410 y=(490-410)/2=40 y=(490+410)/2=450 Второй корень нам не подходит (слишком большая скорость), поэтому скорость второго поезда 40 км/ч, а второго х=90-40=50 км/ч.
Получим
(x - 1)*(x + 3)^2 - 5*(x + 3) = 0
Выносим общий множитель, имеем
( x + 3)*( (x - 1)*( x + 3) - 5) = 0
Аккуратно раскрываем скобки, приводим подобные
( x + 3)*( x^2 + 3x - x - 3 - 5) = 0
( x + 3 )*( x^2 + 2x - 8) = 0
Приравниваем каждое к нулю и решаем отдельно
(1)
x + 3 = 0
x₁ = - 3
(2)
x^2 + 2x - 8 = 0
Решим квадратное уравнение через дискриминант
D = b^2 + 4ac = 4 + 4*8 = 36 = 6^2 > 0
x₂ = ( - 2 + 6)/2 = 4/2 = 2;
x₃ = ( - 2 - 6)/2 = - 8/2 = - 4;
ответ :
- 4; - 3; 2