sav4ukoxana7149
?>

мне назвите степенив одночлена 3a*0.5b*4c

Алгебра

Ответы

azelenkov

Есть 12 вариантов выбора книг для покраски по количеству книг в каждом цвете (красный, зеленый, коричневый)

1 1 10

1 2 9

1 3 8

1 4 7

1 5 6

2 2 8

2 3 7

2 4 6

2 5 5

3 3 6

3 4 5

4 4 4

Им соответствуют количество вариантов выбора книг по их числу, например, первому, 12!/(10!*2!)*2!/(1!*1!)=66*2=132. Их надо посчитать.

И каждому набору соответствует число возможных перестановок по цветам. Если все числа в наборе разные, то 3!=6, если две одинаковые, до 3!/(2!*1!)=3, если все одинаковые (последний случай) , то 3!/(3!*0!)=1.

Затем количество вариантов выбора книг для каждого набора надо умножить на количество перестановок в наборе (то есть, для первого получится 132*3=396), и полученные числа сложить. Получится 519156.

tatasi

y=Π/3-x

sin x+cos(Π/3-x)=1

sin x+cos Π/3*cos x+sin Π/3*sin x=1

sin x*(1+√3/2)+cos x*1/2=1

Переходим к половинным аргументам и умножаем все на 2.

2sin(x/2)*cos(x/2)*(2+√3) + cos^2(x/2) - sin^2(x/2) = 2cos^2(x/2)+2sin^2(x/2)

Переносимости все в одну сторону

3sin^2(x/2) - (4+2√3)*sin(x/2)*cos(x/2) + cos^2(x/2) = 0

Делим все на cos^2(x/2)

3tg^2(x/2)-(4+2√3)*tg(x/2)+1=0

Замена t=tg(x/2)

3t^2-(4+2√3)*t+1=0

Получили обычное квадратное уравнение

D/4=(2+√3)^2-3*1=4+4√3+3-3= 4+4√3

t1=tg(x/2)=[2+√3-√(4+4√3)]/3

t2=tg(x/2)=[2+√3+√(4+4√3)]/3

Соответственно

x1=2*arctg(t1)+Π*n; y1=Π/3-x1

x2=2*arctg(t2)+Π*n; y2=Π/3-x2

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

мне назвите степенив одночлена 3a*0.5b*4c
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

turovvlad
Svetlana1335
Александр Сергей
potemkin77
Antonov-Elena
Natella-874535
ЭдуардовнаКлючников1361
mmi15
vrn3314
platonm777639
yastrik
Матфеопуло1006
Yurevna_Kharkchinov1302
Найти 16sinx+3cosy, если 3sinx-2cosy=5
vbnm100584
MislitskiiSergei1403