Итак, дано: квадрат любого числа есть число положительное. Запишем это математически (скобки для наглядности):
Отрицание первым раскрытие квантора. Существует число, квадрат которого неположителен. Математически:
Отрицание вторым я не знаю, как построить, важно, что приводит это к одному и тому же высказыванию в конце концов. Ну, а истинность установить однозначно нельзя. Если рассматривать это высказывание на множестве натуральных чисел, то оно истинно. Квадрат любого натурального числа положителен, потому что произведение двух положительных чисел положительно. А если, например, над целыми числами - то оно ложно. Контрпример: x = 0. Квадрат такого числа не является числом положительным. Если же рассматривать это высказывание над комплексными числами, найдутся и другие контрпримеры, например,
Стефаниди
30.01.2022
Свойство 1. Если a > b и b > c, то a > c.
Свойство 2. Если a > b, то a+c > b+c.Если к обеим частям неравенства прибавить одно и то же число, то знак неравенства не изменится. Свойство 3. Если a > b и k > 0, то ak > bk.Если обе части неравенства умножить на одно и то же положительное число, то знак неравенства не изменится.
Свойство 4. Если a > b и k < 0, то ak < bk.Если обе части неравенства умножить на одно и то же отрицательное число, то знак неравенства изменится на противоположный. ( < на >, > на <)
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Розвяжіть систему лінійних рівнянь методом підстанови x-2y=5 3x+4y=5
Отрицание первым раскрытие квантора. Существует число, квадрат которого неположителен. Математически:
Отрицание вторым я не знаю, как построить, важно, что приводит это к одному и тому же высказыванию в конце концов.
Ну, а истинность установить однозначно нельзя. Если рассматривать это высказывание на множестве натуральных чисел, то оно истинно. Квадрат любого натурального числа положителен, потому что произведение двух положительных чисел положительно.
А если, например, над целыми числами - то оно ложно. Контрпример: x = 0. Квадрат такого числа не является числом положительным.
Если же рассматривать это высказывание над комплексными числами, найдутся и другие контрпримеры, например,