1) Возьмём число 1: сразу же запишем двузначное число с повторяющимися цифрами, т.е. 11. Теперь запишем все числа, с котороми получатся двузначные числа( одна из цифр это 1), т.е. 12,13,14,15,16.(Не будем менять цифры, т.к. эти цыфры все будут в последующих числах). И так, у нас всего получилось 6 двузначных чисел. Если сделать жиу процедуру с каждой цифрой(всего их 6), то всего даузначных чисел получится 6*6=36.<br />2) Так как по условию цифры должны быть различными то мы просто убираем первое действие, которое мы рассматривали при первом условии, тогда с числом 1 получится 5 двузначных чисел, а т.к. у нас 6 цифр , тогда 5*6=30. Надеюсь все правильно :)
Vladstreletskiy
13.01.2022
Решение Найдите координаты точек, в которых касательные к графику функции y = (x + 1)/(x - 3), имеющие угловой коэффициент k = - 1, пересекают ось абсцисс. Найдем координаты точек, в которых касательные к графику имеют угловой коэффициент угловой коэффициент k = - 1. k = y` = [(x + 1)/(x - 3)]` = [x - 3 - (x + 1)] / (x - 3)² = = - 4 /(x - 3)² y` = - 1 - 4 / (x - 3)² = - 1 x² - 6x + 9 = 4 x² - 6x + 5 = 0 x₁ = 1 x₂ = 5 y₁ = - 1 y₂ = 3 Запишем уравнения этих касательных: 1) y = - (x - 1) - 1 2) y = - (x - 5) + 3 Касательные пересекают ось абсцисс, значит, y = 0 Таким образом, если у = 0, то 1) y = - (x - 1) - 1 - (x - 1) - 1 = 0 x = 0 2) y = - (x - 5) + 3 - (x - 5) + 3 = 0 x = 8 ответ: (0; 0) ; (8; 0)
2) y = √x y₀ = 2 y = y(x₀) + y`(x₀)*(x - x₀) - уравнение касательной если у₀ = 2, то 2 = √x x₀ = 4 абсцисса точки а) y(x₀) = y(4) = √4 = 2 б) y` = 1/2√x y` = 1/2√4 = 1/(2*2) = 1/4 в) y = 2 + (1/4)*(x - 4) y = 2 + (1/4)*x - (1/4)*4 y = 2 + (1/4)*x - 1 y = (1/4)*x + 1 - уравнение касательной в точке
Очень странные дела)
Объяснение:
Мне понравилось