juli19657
?>

Маса зливка одного металу -336 гр, зливка другого - 320 г. Об'єм першого металу на 10 см. кубічних менший від об'єму другого, а густина першого - на 2г/см. кубічних, більша за густину другого. Знайдіть густину кожного металу

Алгебра

Ответы

mirdetzhuk79

Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.

1-ое свойство, которое понадобится

a+c \equiv b + d \ (mod \ m)

То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.

2-ое свойство, которое нам понадобится:

ac \equiv bd \ (mod \ m)

То есть довольно аналогичная вещь в произведении

На нашем примере все увидим

a = 5\cdot 2^{51}+21\cdot 32^{45}

Находим остатки по модулю 31

Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, 16 \equiv (-1) \ (mod \ 17), но сейчас это не нужно), нам повезло, это 32

Учитываем, что 32 \equiv 1 \ (mod \ 31), получаем

5\cdot 2^{51} = 5\cdot 2^1 \cdot 2^{50}=10 \cdot 2^{10\cdot 5} = 10 \cdot (2^{5})^{10}= 10\cdot 32^{10} \equiv 10 \cdot 1^{10} \ (mod \ 31)

То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым

21\cdot 32^{45} \equiv 21 \cdot 1^{45}\ (mod \ 31) \equiv 21 \ (mod \ 31)

Остаток 21, чудесно. Выполняем последний шаг.

5\cdot 2^{51}+21\cdot 32^{45} \equiv 10+21 \ (mod \ 31) \equiv 31 \ (mod \ 31) \equiv 0 \ (mod \ 31)

То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.

si0000
||x-2|-3x|=2x+2
Подмодульная функция x-2 преобразуется в нуль в точке x=2. При меньших значениях за 2 она отрицательная и положительная для x>2. На основе этого раскрываем внутренний модуль и рассматриваем равенство на каждом из интервалов.
при x∈(-∞;2) x-2<0 и |-x+2-3x|=2x+2⇒|2-4x|=2x+2
Подмодульная функция равна нулю в точке x=1/2. При меньших значениях она знакоположительная, при больших – отрицательная. Раскроем модуль для x<1/2
 2-4x=2x+2⇒6x=0⇒x=0∈(-∞;1/2)
Следующим шагом раскрываем модуль на интервале (1/2;2)
-2+4x=2x+2⇒2x=4⇒x=2∉(1/2;2)
Раскроем внутренний модуль для x>2
|x-2-3x|=2x+2⇒|-2-2x|=2x+2
Подмодульная функция  положительная при x<-1 и отрицательная при x>-1
раскрываем модуль на интервале (2;∞)
2+2x=2x+2⇒x∈(2;∞)
итак, х∈{0;(2;∞)}
.
:) решите уравнение: ||х-2|-3х|=2х+2

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Маса зливка одного металу -336 гр, зливка другого - 320 г. Об'єм першого металу на 10 см. кубічних менший від об'єму другого, а густина першого - на 2г/см. кубічних, більша за густину другого. Знайдіть густину кожного металу
Ваше имя (никнейм)*
Email*
Комментарий*