Надо знать периоды синуса и тангенса. Из них все получается. Алгоритм такой: т.к. период синуса 2Pi, то 3/2x=2Pi, значит x=4Pi/3. Это и есть наименьший положительный период. Аналогично, для тангенса. Его наименьший положительный период равен Pi. Значит 7x/8=Pi, откуда x=8Pi/7. Т.е. ответ 8pi/7.
Но вообще, этот метод применим только к функциям, которые имеют вид f(ax+b), где a,b - какие-то числа, и где период f(x) известен и равен T. Тогда приравнивем только ax=T (b - не трогаем), и отсюда находим x=T/a. Это и есть период функции f(ax+b). Докажем это. Так как период f(x) равен T, то f(ax+b)=f(ax+b+T)=f(a*(x+T/a)+b). А это и означает, что период функции f(ax+b) равен T/a.
zabava-83
27.07.2022
Это только а то я устала писать... Если что поищи в инэте. Для решения можно использовать сложение, вычитание, умножение и замену решения вычитанием лучше всего подходит в ситуациях, когда коэффициент одной из переменных одинаков в обоих уравнениях и имеет одинаковый знак. Например, если в обоих уравнениях есть элемент +2х, то надо использовать решение вычитанием.Запишите уравнения так, чтобы переменные х и у и целые числа были друг под другом. Напишите знак вычитания ( - ) за пределами второго уравнения.Пример: Если уравнения: 2x + 4y = 8 и 2x + 2y = 2, то одно из них надо записать над другим и указать знак минус. 2x + 4y = 8 -(2x + 2y = 2) Можно выполнять действия по очереди:2x - 2x = 04y - 2y = 2y8 - 2 = 62x + 4y = 8 -(2x + 2y = 2) = 0 + 2y = 6 Избавившись от одной из переменных, вы можете без проблем найти значение второй.2y = 6Разделите 2y и 6 на 2 и получится y = 3Подставляем y = 3 в уравнение 2x + 2y = 2 и находим x.2x + 2(3) = 22x + 6 = 22x = -4x = - 2Система уравнений решена через вычитание: (x, y) = (-2, 3).
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Вычисли множество значений функции y=6+5⋅sin7x:y∈ [ ; ].
Алгоритм такой: т.к. период синуса 2Pi, то 3/2x=2Pi, значит x=4Pi/3. Это и есть наименьший положительный период.
Аналогично, для тангенса. Его наименьший положительный период равен Pi. Значит
7x/8=Pi, откуда x=8Pi/7. Т.е. ответ 8pi/7.
Но вообще, этот метод применим только к функциям, которые имеют вид f(ax+b), где a,b - какие-то числа, и где период f(x) известен и равен T. Тогда приравнивем только ax=T (b - не трогаем), и отсюда находим x=T/a. Это и есть период функции f(ax+b). Докажем это. Так как период f(x) равен T, то f(ax+b)=f(ax+b+T)=f(a*(x+T/a)+b). А это и означает, что период функции f(ax+b) равен T/a.