ответ:a) y=x^4 -3x^8 +9 y' = 4x^3 - 24x^7
б) y=1/x -16√x y' = -(1/(x^2)) - (8/sqrt(x))
в) y=-3/x -7tgx + x/8 y' = 3/(x^2) - 7/(cos^2(x)) + 1/8
г) y=cosx + 4√x y' = -sinx + 2/sqrt(x)
д) y= 2cosx + 4√x y' = -2sinx + 2/sqrt(x)
а) y=x *ctgx y' = ctgx - (x/(sin^2(x)))
б) y=√x *tgx y' = tgx/2*sqrt(x) + sqrt(x)/cos^2(x)
в) y=sinx/x y' = (cosx*x - sinx) / sin^2(x)
г) y=3x+3/3x-3 = y' = ( (3x+3)' * (3x-3) - (3x+3) * (3x-3)' ) / ((3x-3)^2) = (3(3x-3) - 3(3x+3))/ (3x-3)^2
а) y=(3x-4)^6 y' = 6(3x-4)^5 * 3 = 18(3x-4)^5
б) y=√7x-√3 y' = √7√x -√3 = (√7)/2x + 0 + 0 = (√7)/2x
в) y=sin(3x- π/4)
(c*f(x))' = c*f(x)' умножим потом на -1.
y' = (cos(3x + π/4))' = (cos(3x + π/4))'(3x+π/4)' = -3sin(3x+π/4)
Обратно умножим на -1
3sin(3x+π/4)
Объяснение: там должен быть ответ на твой вопрос удачи!
f(t)=t² - 1/4 · t - 9, при t=4 f(t)= 4²- 1/4· 4 - 9 =16-1-9=6 , значит координаты искомой точки (4; 6) 2)
Дана Парабола y=x^2 напишите уравнение каждый из полученных при следующих сдвигах данные параболы:
a) на две единицы вверх вдоль оси Oy у=х²+2
2)на 3 единицы вниз вдоль оси Oy у=х²- 2
3)на 7 единиц вправо вдоль оси Ox у = (х-7)²
4)на четыре единицы влево вдоль оси Ox у= (х+4)²
5)на 9 дней?? цифра вдоль оси Ox и на 6 единиц вверх вдоль оси Oy??? у=(х-9)²+6
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
При каких значениях х и у, дробь 2х2 - у2 + ху / х2 - у2 не имеет смысла? (2 - квадрат)
не имеет смысла, когда х=y или -у