Найти массу тела, ограниченного цилиндрической поверхностью x²=2y и плоскостями x+z=1 , 2y+z=2 , если в каждой его точке объёмная плотность численно равна ординате этой точки.
=========================================
m = ρ·V , где m - масса тела, V - объём тела,
ρ (x, y, z) = y - объёмная плотность по условию
Проекция цилиндрической поверхности x²=2y на плоскость xOy - парабола y=0,5x². Ограничена по y≥0 снизу, но не ограничена сверху.
x+z=1, 2y+z=2 - уравнения плоскостей. Для нахождения проекции линии их пересечения на плоскость xOy составим систему
0 ≤ y ≤ 0,5(x + 1) - границы интегрирования по у
Точки пересечения параболы y=0,5x² и прямой y=0,5(x+1) на плоскости xOy
- границы интегрирования по х
Осталось определить, какая из плоскостей по z лежит ниже. Для этого достаточно подставить координаты вершины параболы для нахождения аппликаты точек пересечения плоскостей с цилиндрической поверхностью.
x = 0; y = 0
x + z = 1; 0 + z = 1; z = 1 - (0;0;1) - точка плоскости z=1-x
2y + z = 2; 2·0 + z = 2; z = 2 - (0;0;2) - точка плоскости z=2-2y
1 - x ≤ z ≤ 2 - 2y - границы интегрирования по z
Во втором приложении разные ракурсы полученной объёмной фигуры.
Поделитесь своими знаниями, ответьте на вопрос:
Сократите дробь (х^2+3х-4)/(х+4) (3х-9)/(х^2+4х-21)
x^2+3x-4/x+4
x^2+4x-x-4/x+4
x×(x+4)-(x+4)/x+4
(x+4)×(x-1)/x-1
Відповідь: х-1
3x-9/x^2+4x-21
3(x-3)/x^2+7x-3x-21
3(x-3)/(x+7)×(x-3)
3/x+7
Відповідь: 3/х+7