D=9+16=25=5^2
X12=(-3(+-)5)/2
X1=-4
Z2=1
Среднее арифметическое=(-4+1)/2=-1,5
Объяснение:
у = -х² + 2х + 10
Объяснение:
Квадратичная функция у = ах² + bx + c (1)
График её проходит через точку (0; 10)
Подставим координаты этой точки в формулу (1)
10 = а·0 + b · 0 + c ⇒ c = 10
Вершина параболы находится в точке (1; 11)
Подставим координаты этой точки в формулу (1)
11 = а + b + 10 ⇒ а + b = 1 (2)
Координата х вершины параболы вычисляется по формуле
х(верш) = -b/(2a)
x (верш) = 1, тогда b = -2a (3)
Подставим (3) в (2) а - 2а = 1 ⇒ а = -1
Тогда b = -2 · (-1) = 2
Квадратичная функция получилась такая
у = -х² + 2х + 10
1) Сколько разных трехзначных чисел, не имеющих одинаковых цифр, можно записать с цифр 1, 2, 3, 4?
Схема решения (в скобках указаны возможные варианты):
Объяснение:
Значит, общее количество вариантов: 4*3*2 = 24 трехзначных числа.
2) Сколько разных трехзначных чисел можно записать с цифр 6,7,8,9?
Решение: 4*4*4 = 64 трехзначных числа.
3) Сколько разных двузначных чисел можно записать, используя 1, 2, 3, 4?
Решение: 4*4 = 16 двузначных чисел.
4) Какова вероятность того, что двузначное число, записанное цифрами 1, 2, является четным?
Решение: Р(А) = 2 :( 2*2) =0,5
5) Сколькими можно составить расписание из 4 разных предметов на один учебный день из четырех уроков?
Решение
Сколькими можно составить расписание из 6 разных предметов на один учебный день из шести уроков?
Решение
6) Сколькими можно составить расписание из 6 разных предметов на один учебный день из шести уроков так, чтобы первый урок был физика, а последний физкультура?
Решение
7) Сколькими можно составить расписание из 6 разных предметов на один учебный день из шести уроков так, чтобы первым уроком была физика, а перед последней физкультурой была алгебра?
Решение
8) Найти вероятность того, что в расписании на один учебный день из шести уроков из шести разных предметов вторым уроком была химия.
Решение: Р(А) = (5*1*4*3*2*1) : (6*5*4*3*2*1) = 1/6
9) Из пяти спортсменов для участия в турнире нужно послать троих. Сколькими это можно сделать?
Решение: С
10) Сколькими из 36 карт можно выбрать две карты?
Решение: С
11) На окружности отмечено 12 точек. Сколько существует треугольников с вершинами в этих точках?
Решение: С312= 12! : (9!*3!)=223 треугольников
12) В вазе лежат 5 разных яблок и 6 разных апельсин. Сколькими из них можно выбрать два яблока и два апельсина?
Решение: С25* С
13) В школьном хоре 6 девочек и 4 мальчика, в том числе Миша Орлов. Какова вероятность, что в концерте будет участвовать Миша, если в концерте будет участвовать один мальчик и одна девочка?
Решение: Р (А) = 6 : (С16* С14) = ¼
Целесообразно бывает при изучении комбинаторных эадач параллельно рассматривать задачи по теории вероятностей, тем самым показывая во-первых тесную связь этих тем, а во- вторых более рациональное их решение. Задачи, в которых рассматривается количество соединений разных элементов, можно начинать с 5 класса на факультативных, кружковых занятиях, при обобщающем повторении и на предметных неделях, циклично возвращаясь к ним на протяжении всего курса до 11 класса, углубляя знания по данным темам год от года.
Тогда к 11 классу учащиеся уверенно вычисляя факториалы натуральных чисел, будут находить вероятности событий и отвечать на вопросы комбинаторных задач, не испытывая дискомфорта или страха перед нестандартными учебными задачами.
Поделитесь своими знаниями, ответьте на вопрос:
Решите уравнение x²+3x-4=0. если корней несколько найдите их среднее арифметисеское.
x₁ = -4
x₂ = 1
Объяснение:
x² + 3x - 4 = 0
x² + 4x - x - 4 = 0
x(x + 4) - (x + 4) = 0
(x + 4)(x - 1) = 0
x + 4 = 0
x - 1 = 0
x = -4
x = 1