4+0+...4(2-n)=2n(3-n) Док-во: 1) Проверим, что верно n=1: 4=2*1(3-1); 4=2(2); 4=4 -верно 2)Допустим, что верно для n=k, тогда: 4+...+4(2-k)=2k(3-k) 3)Докажем, что верно для n=k+1, тогда 4+...+4(2-(k+1))=2(k+1)(3-(k+1)); 4+...+4(2-1-k)=2(k+1)(3-1-k); 4+...+4(1-k)=2(k+1)(2-k) -? 4+...+4(1-k)=2(k+1)(2-k)=> {4+...+4(2-k)}+4(1-k)= то, что находится в {...} заменяем на то, что получили во втором шаге, т.е. на 2k(3-k), получаем = 2k(3-k)+4(1-k)=6k-2k^2+4-4k= 6k-4k-2k^2+4= 2k-2k^2+4= -(2k^2-2k-4) Раскладываем квадратное уравнение -(2k^2-2k-4)=0; D=4+32=36=6^2 k1=(2-6)/4=-4/4=-1; k2=(2+6)/4=10/4 => -(2k^2-2k-4)=-2(k-10/4)(k+1)=(-2k+5)(k+1)= =(5-2k)(k+1)=2(2.5-k)(k+1) Получается, что неверно, но м.б. я гдн-то ошибся, но в общем такого вида получается док-во
Sergeevna803
06.04.2022
Ищи дискриминант и, если он неотрицателен, находи корни. 1) D=7^2-4*3*2=49-24=25; x1=(-7-5)/6=-2; x2=(-7+5)/6=-1/3 2 рац. отриц. корня 2) D=8^2-4*3*2=64-24=40; x1=(8-√40)/6>0; x2=(8+√40)/6>0 2 иррац. полож. корня 3) D=11^2-4*4(-3)=121+48=169; x1=(11-13)/8=-1/4; x2=(11+13)/8=3 2 рац. корня разных знаков 4) D=2^2-4(-8)*3=4+96=100; x1=(2-10)/(-16)=1/2; x2=(2+10)/(-16)=-3/4 2 рац. корня разных знаков 5) D=3^2-4*5*1=9-20<0; корней нет 6) D=11^2-4(-6)(-3)=121-72=49; x1=(-11-7)/(-12)=3/2; x2=(-11+7)/(-12)=1/3 2 рац. полож. корня 7)D=4^2-4(-2)(-3)=16-24<0; корней нет 8) D=10^2-4*2(-5)=100+40=140; x1=(10-√140)/4<0; x2=(10+√140)/4>0 2 иррац. корня разных знаков
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Представьте выражение в виде многочлена. (a в квадрате− 3a) в квадрате
4+0+...4(2-n)=2n(3-n)
Док-во: 1) Проверим, что верно n=1: 4=2*1(3-1); 4=2(2); 4=4 -верно
2)Допустим, что верно для n=k, тогда: 4+...+4(2-k)=2k(3-k)
3)Докажем, что верно для n=k+1, тогда 4+...+4(2-(k+1))=2(k+1)(3-(k+1));
4+...+4(2-1-k)=2(k+1)(3-1-k); 4+...+4(1-k)=2(k+1)(2-k) -?
4+...+4(1-k)=2(k+1)(2-k)=> {4+...+4(2-k)}+4(1-k)= то, что находится в {...} заменяем на то, что получили во втором шаге, т.е. на 2k(3-k), получаем
= 2k(3-k)+4(1-k)=6k-2k^2+4-4k= 6k-4k-2k^2+4= 2k-2k^2+4= -(2k^2-2k-4)
Раскладываем квадратное уравнение -(2k^2-2k-4)=0; D=4+32=36=6^2
k1=(2-6)/4=-4/4=-1; k2=(2+6)/4=10/4 => -(2k^2-2k-4)=-2(k-10/4)(k+1)=(-2k+5)(k+1)=
=(5-2k)(k+1)=2(2.5-k)(k+1)
Получается, что неверно, но м.б. я гдн-то ошибся, но в общем такого вида получается док-во