7/Задание № 1:
Сколько чётных двузначных чисел, которые при делении на сумму цифр числа дают неполное частное 7 и остаток 3?
РЕШЕНИЕ: Пусть это число АВ=10a+b. Тогда, 10a+b=7(a+b)+3.
10a+b=7a+7b+3
3a=6b+3
a=2b+1
2b=a-1
Учитывая, что:
- а и b цифры, то есть целые числа от 0 до 9, но а не ноль, поскольку AB двузначное число
- число AB должно быть четным, то проверять нечетные b нет смысла
- остаток должен быть меньше делителя, значит минимально возможная сумма (a+b) равна 4
b=0: a=2*0+1=1 - не может быть a+b=1<4
b=2: a=2*2+1=5, число 52
b=4: a=2*4+1=9, число 94
При b=6 и более а=2*6+1=13 и более - не соответствует цифре.
ОТВЕТ: 2 числа
Поделитесь своими знаниями, ответьте на вопрос:
.Решите неравенства а) -1 х2-х >0 б) -49х2+14х-1≥0 в) -3х2 +х-2 <0 √(3Х^2-19Х+6) при каких значениях х выражение имеет смысл РАЗВЕРНУТЫЙ ОТВЕТ
1.
Пусть первая бригада может выполнить работу за x дней ,тогда
вторая бригада может выполнить эту работу за 5x дней
За день
первая бригада выполнит 1/x часть работы ,
вторая бригада _ 1/5x часть работы ,
вместе_ (1/x +1/5x) часть работы.
можем написать уравнение
1/x +1/5x = 1/4 ⇒ x = 4, 8 (день) и 5*4,8 = 24 (день)
---
3.
Решите уравнение заменой переменных (x²-2x)²+12(x²-2x)+11=0.
замена t = x²- 2x
t² +12t +11=0 ; D₁ = (12/2)² -11 =6²- 11=25 =5²
t₁ = -6 -5 = -11 ⇒ x²-2x = -11 ⇔ x²-2x+11=0 ⇔(x-1)²+10=0 ⇒ x∈∅ .
t₂ = - 6 +5 = -1 ⇒ x²-2x = -1 ⇔ x²-2x+1=0 ⇔(x-1)²=0 ⇒ x=1 .
---
4.
Решить иррациональное уравнение √(2x²-3x+5)=√(x²+x+1)
ОДЗ : { 2x²- 3x+5 ≥ 0 , x²+x+1≥ 0 . ⇒ x ∈R .
* * * D(1) =3² - 4*2*5 = - 31 < 0 , a=2>0 и D(2) = (-1)² -4*1*1 = -3<0 * * *
2x²-3x+5= x²+x+1 ;
x² -4x +4 =0 ;
(x-2)² =0 ;
x=2 .