24.186. Для функції f знайдіть на вказаному проміжку І первісну F, графік якої проходить через дану точку М:2) f (x) = 4х^3 – 2х + 3, I = (-∞ +∞), м (1;8)
1) Введем функцию: f(x)=(х∧2+2х+1)(х-3)(х+2)÷х∧2+2х-3, f(x)=0, (х∧2+2х+1)(х-3)(х+2)÷х∧2+2х-3=0 2) Найдем нули числителя и знаменателя: Числитель: -Все скобки приравниваем к нулю: х∧2+2х+1=0 D<0, f(x)>0 х-любое число x-3=0 x=3 x+2=0 x=-2 Расставляем полученные числа на числовую прямую, нам нужен промежуток с плюсом, т.к. в условии функция >0, получаем х принадлежит(-бесконечности; 2),(3; до +бесконечности), Знаменатель: х∧2+2х-3 не равно 0 D=16 x=-3 x=1 Так же на числовой прямой расставляем полученные корни, получаем х принадлежит (-бесконечности; -3),(1; + бесконечности) Сопоставляем полученные промежутки на общую числовую прямую, получаем конечный ответ х принадлежит (-бесконечности; -3),(3; + бесконечности)
24.186. Для функції f знайдіть на вказаному проміжку І первісну F, графік якої проходить через дану точку М:2) f (x) = 4х^3 – 2х + 3, I = (-∞ +∞), м (1;8)
Відповідь:
Пояснення: