1) -cosx=-2 - не существует, поскольку cosx принадлежит [-1:1]
2) √2*sinx=1 делим на √2
sinx= 1/√2
sinx= 1/√2
используем обратную тригонометрическую ф-цию
x=arcsin(1/√2)
sinx периодическая ф-ция добавляем 2Пn, n принадлежит Z
x=arcsin(1/√2)+2Пn, n принадлежит Z
Решаем уравнение
x=п/4+2Пn, n принадлежит Z
Вроде так
egorova90356684858370
25.02.2020
Графически это выглядит следующим образом (см. вложение). Нам нужна площадь области, выделенной красным цветом (честно говоря, полчаса соображал, как это сделать в программе, чтобы она меня поняла)).
Алгоритм такой: 0. Обе параболы поднимаются на 1 единицу вверх, чтобы мы могли вычислить определённый интеграл (он ограничен осью x). Площадь фигуры при этом не изменится, так что всё нормально. 1. Вычисляется площадь фигуры под ; 2. Теперь — под ; 3. Разность площадей и будет искомой фигурой.
По дороге ещё придётся найти нули функции, т. к. для определённого интеграла нужна область вычисления.
Поехали.
1)
2)
3) (кв. ед.)
Вроде бы так... :) Попробую сейчас проверить решение.
upd: да, всё сошлось.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
З якою швидкістю рухається турист якщо за 6 год він прохадить таку саму відстань що велосипедист проїсджає за 1.5 год швидкість
Объяснение:
Выносим общий множитель √2*sinx за скобки
√2*sinx*(2-cosx)+cosx-2=0
Выносим знак минус за скобку
√2*sinx*(2-cosx)-(2-cosx)=0
Выносим за скобку общий множитель 2-cosx
(2-cosx)*(√2*sinx-1)=0
2-cosx=0 или √2*sinx-1=0
1) -cosx=-2 - не существует, поскольку cosx принадлежит [-1:1]
2) √2*sinx=1 делим на √2
sinx= 1/√2
sinx= 1/√2
используем обратную тригонометрическую ф-цию
x=arcsin(1/√2)
sinx периодическая ф-ция добавляем 2Пn, n принадлежит Z
x=arcsin(1/√2)+2Пn, n принадлежит Z
Решаем уравнение
x=п/4+2Пn, n принадлежит Z
Вроде так