а² - b² = (a - b)(a + b) - разность квадратов
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
25 - 16а² = 0
5² - (4а)² = 0
(5 - 4а)(5 + 4а) = 0
5 - 4а = 0 и 5 + 4а = 0
-4а = -5 4а = -5
а = -5 : (-4) а = -5 : 4
а₁ = 1,25 а₂ = -1,25
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0,09х² - 4 = 0
(0,3х)² - 2² = 0
(0,3х - 2)(0,3х + 2) = 0
0,3х - 2 = 0 и 0,3х + 2 = 0
0,3х = 2 0,3х = -2
х = 2 : 0,3 х = -2 : 0,3
х = 20/3 х = -20/3
х₁ = 6 целых 2/3 х₂ = - 6 целых 2/3
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
16b² - 40b + 25 = 0
16х² - 40х + 25 = 0 (заменили b на х, чтобы не путаться)
D = b² - 4ac = (-40)² - 4 · 16 · 25 = 1600 - 1600 = 0
Так как дискриминант равен 0, уравнение имеет только один корень
х = (-b±√D)/2а = (40±0)/(2·16) = 40/32 = 5/4 = 1,25
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0,25х² - 1 = 0
(0,5х)² - 1² = 0
(0,5х - 1)(0,5х + 1) = 0
0,5х - 1 = 0 и 0,5х + 1 = 0
0,5х = 1 0,5х = -1
х = 1 : 0,5 = 10 : 5 х = -1 : 0,5 = -10 : 5
х₁ = 2 х₂ = -2
Объяснение:
Систем нету, поэтому решу только две задачи.
1. Купюры на 500 руб, всего 22 штуки.
{ 50x + 10y = 500
{ x + y = 22
Делим 1 уравнение на 10
{ 5x + y = 50
{ x + y = 22
Вычитаем из 1 уравнения 2 уравнение
5x + y - x - y = 50 - 22
4x = 28
x = 7 купюр по 50 рублей.
y = 22 - x = 22 - 7 = 15 купюр по 10 рублей.
2. Прямая y = kx + b; A(5; 0); B(-2; 21)
Подставляем координаты вместо х и у.
{ 0 = k*5 + b
{ 21 = k*(-2) + b
Из 1 уравнения вычитаем 2 уравнение
0 - 21 = 5k + b - (-2)k - b
-21 = 7k
k = -21/7 = -3
b = -5k = -5*(-3) = 15
Прямая y = -3x + 15
Поделитесь своими знаниями, ответьте на вопрос:
Найдите целые решения неравенства: x^2-3x-4<0 * -1; 0; 1; 2; 3; 4 0; 1; 2; 3; 4 -1; 0; 1; 2; 3; 0; 1; 2; 3
Объяснение:
отлично