sbraginets
?>

1.При каких значениях переменной, алгебраическая дробь имеет смысл​

Алгебра

Ответы

Serezhkin

Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.

1-ое свойство, которое понадобится

a+c \equiv b + d \ (mod \ m)

То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.

2-ое свойство, которое нам понадобится:

ac \equiv bd \ (mod \ m)

То есть довольно аналогичная вещь в произведении

На нашем примере все увидим

a = 5\cdot 2^{51}+21\cdot 32^{45}

Находим остатки по модулю 31

Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, 16 \equiv (-1) \ (mod \ 17), но сейчас это не нужно), нам повезло, это 32

Учитываем, что 32 \equiv 1 \ (mod \ 31), получаем

5\cdot 2^{51} = 5\cdot 2^1 \cdot 2^{50}=10 \cdot 2^{10\cdot 5} = 10 \cdot (2^{5})^{10}= 10\cdot 32^{10} \equiv 10 \cdot 1^{10} \ (mod \ 31)

То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым

21\cdot 32^{45} \equiv 21 \cdot 1^{45}\ (mod \ 31) \equiv 21 \ (mod \ 31)

Остаток 21, чудесно. Выполняем последний шаг.

5\cdot 2^{51}+21\cdot 32^{45} \equiv 10+21 \ (mod \ 31) \equiv 31 \ (mod \ 31) \equiv 0 \ (mod \ 31)

То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.

tatasi

Пусть точка C(0, m) - центр окружности (так как по условию центр лежит на оси OY, то первая координата равна 0)

Известно, что расстояние от центра до любой точки на окружности является константой и равно радиусу R окружности

Наша окружность проходит через точку 7 на оси OY, значит R = 7 - m

Также окружность проходит через точку 5 на оси OX, значит по теореме Пифагора R = \sqrt{m^2+25}

Приравняем это и получим уравнение:

7 - m = \sqrt{m^2+25}\\

Возвёдём в квадрат и решим уравнение:

(7-m)^2 = (\sqrt{m^2+25})^2\\\\49 - 14m + m^2 = m^2 +25\\\\14m = 49 - 25\\14m = 24\\\\m = \frac{24}{14} = \frac{12}{7}

Координата центра окружности  -   C(0,\;\frac{12}{7})

Радиус окружности: R = 7 -m = 7 - \frac{12}{7} = \frac{49-12}{7} = \frac{37}{7}

Уравнение окружности выглядит следующим:

(x - x_c)^2 + (y - y_c)^2 = R^2

Подставим наши числа:

(x - 0)^2 + (y - \frac{12}{7})^2 = (\frac{37}{7})^2 \\\\x^2 + (y - \frac{12}{7})^2 = \frac{1369}{49}

ответ: x^2 + (y - \frac{12}{7})^2 = \frac{1369}{49}


Напиши уравнение окружности, которая проходит через точку 5 на оси ox и через точку 7 на оси oy , ес

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

1.При каких значениях переменной, алгебраическая дробь имеет смысл​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Алина1564
Антон-Марина
Бернард pokerman
os7960
tinadarsi
schumacher8
semenovakotya577
Ignateva737
Сергеевна-Иван1045
seletan1
aleksey7800
fiorire731
oledrag7
kondrashovalf6404
Екатерина_Кирушев
- a) x² – 9 = 0;6) x2 - 5 = 0;B) x2 - 64 = 0;r) x2 - 10 = 0.​