1) Чтобы значение квадратного корня было натуральным числом, подкоренное выражение должно быть полным квадратом, при этом n должно быть наименьшим (по условию).
169=13²
12²=144 - ближайший к 169 квадрат числа, значит n=169-144=25
ответ: n=25
2) Чтобы значение квадратного корня было натуральным числом, подкоренное выражение должно быть полным квадратом, при этом n должно быть наибольшим (по условию).
121=11²
1²=1 - наименьшее возможное значение покоренного выражения, значит n=121-1=120
ответ: n=120
25
Объяснение:
решения.
Выпишем несколько первых натуральных чисел кратных 5:
5, 10, 15, 20, 25, 30, 35, 40, 54, ... (далее каждое пятое натуральное число будет являться членом данной последовательности).
Пронумеруем члены последовательности:
Число, следующее за четвертым членом последовательности 25.
решения.
Воспользуемся формулой для нахождения n-го члена арифметической последовательности.
Наименьшее натуральное число делящееся на 5 это 5, т.е. .
Далее каждое пятое натуральное число делится на 5. Значит разность арифметической прогрессии равна 5, т.е. .
Т.к. по условию нужно найти число, следующее за a₄, то находим а₅.
Поделитесь своими знаниями, ответьте на вопрос:
Дано f(x) = x2 + 3. Порівняйте f(0) і f(- 1
f(0) < f(-1)
Объяснение:
f(x) = x^2 + 3
Потрібно підставити значення 0 і (-1) замість x у вираз.
f(0) = 0 + 3 = 3
f(-1) = 1 + 3 = 4
4 > 3
f(-1) > f(0)