222.
Объяснение:
P = 44см
a - b = 2см
a∠b = 60°
Для начала мы можем найти стороны a и b параллелограмма. Мы знаем, что периметр это удвоенная сумма его смежных сторон, так что 2(a+b)=44. Следовательно:
a + b = 22
a - b = 2
Получили систему уравнений, которую можно решить, например, сложением.
a + a + b - b = 22 + 2
2a = 24, a = 12, b = 10
Проверяем: 12 + 10 = 22, 12 - 10 = 2.
Теперь когда мы знаем обе стороны, можем найти меньшую диагональ по формуле:
d = √(a^2 + b^2 - 2ab·cosβ) = √(144 + 100 - 44*1/2) = √(222)
Поскольку нам нужно найти ее квадрат, корень в конце можем не брать, а 222 и будет ответом.
Поделитесь своими знаниями, ответьте на вопрос:
Периметр прямоугольника равен 46 см, а диагональ-17 см. Найдите длины ребер прямоугольника(системные уравнения)
Чтобы избавиться от модуля, нужно рассмотреть два случая: когда выражение под знаком модуля неотрицательно (и тогда это модуль равен самому этому выражению), и когда выражение под знаком модуля отрицательно (и тогда это модуль равен выражению, взятому с обратным знаком).
1. Выражение под знаком модуля приравниваем нулю и решаем получившееся уравнение, чтобы узнать интервалы, на которых это выражение может менять свой знак.
х-4=0 → х=4.
2. Рассматриваем случай х<4
При этом выражение отрицательно, следовательно |x-4| = 4-x
-3|x-4|-x = -3(4-x)-x = -12+3x-x = 2x-12 = 2(x-6)
3. Рассматриваем случай x≥4
При этом выражение неотрицательно, поэтому |x-4| = х-4
-3|x-4|-x = -3(x-4)-x = -3x+12-x = -4x+12 = 4(3-x)
4. Объединяя два эти выражения, получаем