n1
log 7 (2 - x) =< log 7 (2x^2 - x)
2 - x =< 2x^2 - x
2x^2 - 2 > = 0
x € (-беск. ; -1] u [1 ; +беск.)
n2
log 0,5 (x^2 - 1) < -3
log 0,5 (x^2 - 1) < log 0,5 (8)
x^2 - 1 > 8
x^2 - 9 > 0
x € (-беск. ; -3) u (3 ; +беск.)
n3
lg (7^(6 - 2x) + 3) - lg (39) > lg (4) - lg (3)
lg (7^(6 - 2x) + 3) > lg (39) + lg (4) - lg (3)
lg (7^(6 - 2x) + 3) > lg (52)
7^(6x - 2) + 3 > 52
7^(6x - 2) > 49
6x - 2 > 2
6x > 4
x > 2/3
n4
log 2x + 1 (5 - 2x) > 1
log 2x + 1 (5 - 2x) > log 2x + 1 (2x + 1)
5 - 2x > 2x + 1
- 4x > - 4
x < 1
log 2x + 1 (5 - 2x) > 1
log 2x + 1 (5 - 2x) > log 2x + 1 (2x + 1)
5 - 2x < 2x + 1
-4x < -4
x > 1
2x + 1 > 0
x € (-1/2 ; 0)
5 - 2x > 0
x € (0 ; 5/2)
{x € (-1/2 ; 0) x - не существует
{x > 1
{x € (0 ; 5/2) x € (0 ; 1)
{x < 1
ответ : (0 ; 1
Поделитесь своими знаниями, ответьте на вопрос:
Исследовать на экстремум функцию: z= x^2+5xy+5y^2-2x-y+4, при условии 2x+9y=0
из условия 2х+9у=0 выражаем у то есть у=-2х/9 это подставляем в функцию и берем производную приравниваем её в нулю и находим х - условный экстремум функции