log_3(x+3)=log_3(x^2+2x-3) ОДЗ: x+3>0 => x>-3 x+3=x^2+2x-3 x^2+2x-3>0 x^2+2x-3-x-3=0 x^2+2x-3=0 x^2+x-6=0 x₁+x₂=-2 x₁+x₂=-1 x₁*x₂=-3 x₁*x₂=-6 x₁=-3; x₂=1 => x<-3; x>1 x₁=-3 - не входит в ОДЗ x>1 x₂=2 x=2
log_2(2x-1)-2=log_2(x+2)-log_2(x+1) ОДЗ: 2x-1>0 => x>0.5 log_2(2x-1)-log_2(4)= log_2(x+2)-log_2(x+1) x+2>0 => x>-2 log_2((2x-1)/4)=log((x+2)/(x+1)) x+1>0 => x>-1 (2x-1)/4=(x+2)/(x+1) x>0.5 (2x-1)(x+1)=4(x+2) 2x^2+x-1-4x-8=0 2x^2-3x-9=0 D=(-3)^2-4*2*(-9)=81 √81=9 x₁=3 x₂=-1.5 - не входит в ОДЗ х=3
log_5(2x^2-x)/log_4(2x+2)=0 ОДЗ: 2x^2-x>0 => x>0.5 log(4)log(2x^2-2)/log(5)log(2x+2)=0 2x+2>0 => x>-1 log(2x^2-x)/log(2x+2)=0 log(2x^2-x)=0 log(2x+2)≠0 2x^2-x=1 2x^2-x-1=0 D=9 x₁=1 x₂=-0.5 - не входит в ОДЗ x=1
log_2x(x^2+x-2)=1 ОДЗ: 2x>0 => x>0 log_2x(x^2+x-2)=log_2x(2x) x^2+x-2>0 x^2+x-2=2x x^2+x-2=0 x^2-x-2=0 x₁+x₂=-1 x₁+x₂=1 x₁*x₂=-2 x₁*x₂=-2 x₁=-2; x₂=1 x₁=2 x>1 x₂=-1 - не входит в ОДЗ x=2
dimari81
02.08.2020
Решение: 1) ОДЗ для данной функции определено на всей числовой прямой (D(f) ∈ R) 2) Функция ни четна, ни нечетна 3) Точки пересечения с осью OX при x₁ = 0; x₂ = 3. Точки пересечения с осью OY в y = 0 4) (x-3)^2 в данной функции будет иметь постоянно положительный знак, т.к. оно находится под квадратом. Значит, знак всей функции зависит только от множителя x. Там, где x>0, функция положительна; соответственно, где x<0, там и y<0. 5) Мы нашли точки экстремума. Теперь найдем промежутки возрастания/убывания функции:
x+3=x^2+2x-3 x^2+2x-3>0
x^2+2x-3-x-3=0 x^2+2x-3=0
x^2+x-6=0 x₁+x₂=-2
x₁+x₂=-1 x₁*x₂=-3
x₁*x₂=-6 x₁=-3; x₂=1 => x<-3; x>1
x₁=-3 - не входит в ОДЗ x>1
x₂=2
x=2
log_2(2x-1)-2=log_2(x+2)-log_2(x+1) ОДЗ: 2x-1>0 => x>0.5
log_2(2x-1)-log_2(4)= log_2(x+2)-log_2(x+1) x+2>0 => x>-2 log_2((2x-1)/4)=log((x+2)/(x+1)) x+1>0 => x>-1 (2x-1)/4=(x+2)/(x+1) x>0.5
(2x-1)(x+1)=4(x+2)
2x^2+x-1-4x-8=0
2x^2-3x-9=0
D=(-3)^2-4*2*(-9)=81 √81=9
x₁=3
x₂=-1.5 - не входит в ОДЗ
х=3
log_5(2x^2-x)/log_4(2x+2)=0 ОДЗ: 2x^2-x>0 => x>0.5
log(4)log(2x^2-2)/log(5)log(2x+2)=0 2x+2>0 => x>-1
log(2x^2-x)/log(2x+2)=0
log(2x^2-x)=0
log(2x+2)≠0
2x^2-x=1
2x^2-x-1=0
D=9
x₁=1
x₂=-0.5 - не входит в ОДЗ
x=1
log_2x(x^2+x-2)=1 ОДЗ: 2x>0 => x>0
log_2x(x^2+x-2)=log_2x(2x) x^2+x-2>0
x^2+x-2=2x x^2+x-2=0
x^2-x-2=0 x₁+x₂=-1
x₁+x₂=1 x₁*x₂=-2
x₁*x₂=-2 x₁=-2; x₂=1
x₁=2 x>1
x₂=-1 - не входит в ОДЗ
x=2