Пусть х км/ч - скорость течения реки, тогда скорость катера по течению равна (18+х) км/ч, а против течения - (18-х) км/ч. Время, затраченное на движение по течению, равно 80/(18+х); на движение против течения - 80/(18-х); на весь путь - 80/(18+х)+80/(18-х) или 9 часов. Составим и решим уравнение:
18+x
80
+
18−x
80
=9 |*(18+x)(18-x)
80(18-x)+80(18+x)=9(324-x^2)80(18−x)+80(18+x)=9(324−x
2
)
1440-80x+1440+80x=9(324-x^2)1440−80x+1440+80x=9(324−x
2
)
2880=9(324-x^2)2880=9(324−x
2
) |:9
320=324-x^2320=324−x
2
x^2=324-320x
2
=324−320
x^2=4x
2
=4
х=2
х=-2<0 (не подходит, т.к. скорость не может быть отрицательной)
ответ: скорость течения реки 2 км/ч
P.S сори что так написал(((
Поделитесь своими знаниями, ответьте на вопрос:
Объясните, как решить неравенства: а) б)
По течению со скоростью (18+х)км/час 80 км за время:
80/(18+х) час
Против течения те же 80 км со скоростью (18-х)км/час за время:
80/(18-х), т.к. общее время 9час, то: 80/(18+х) + 80/(18-х) = 9;
80·(18-х) + 80·(18+х) = 9(18+х)·(18-х), раскроем скобки, сократим члены с противоположными знаками,разделим все члены уравнения на 9 и получим: х² = 4, х₁=2(км/час.
(Отрицательную скорость течения х₂ отметаем)
2.а) х²/(х+3) = 1/4; 4х² - х-3 =0; х₁ =(1+7)/8 =1; х₂ = (1-7)/8= -3/4
б) (х²-х)/(х+3) = 12/(х+3); х²-х-12 =0; х₁ = (1+7)/2=4; х₂ =(1-7)/2=-3
3. у =(х²-5х+6)/(х²-4), у=0; (х²-5х+6)/(х²-4)=0. , Отбрасываем знаменатель, так ка дробь равна нулю, когда ее числитель равен 0; х² - 5х + 6 =0; х₁=(5+1)/2 = 3: х₂ =(5-1)/2 =2