x0 = 4
Объяснение:
f(x) = ax^2 + bx + c
По графику мы видим, что f(1) = 6; f(2) = 1; f(3) = -2
Составляем систему:
{ a + b + c = 6
{ 4a + 2b + c = 1
{ 9a + 3b + c = -2
Осталось решить простую линейную систему.
Умножаем 1 уравнение на -4 и складываем его со 2 уравнением.
{ a + b + c = 6
{ 0a - 2b - 3c = -23
{ 9a + 3b + c = -2
Умножаем 1 уравнение на -9 и складываем его с 3 уравнением.
Умножаем 2 уравнение на -1
{ a + b + c = 6
{ 0a + 2b + 3c = 23
{ 0a - 6b - 8c = -56
Умножаем 2 равнение на 3 и складываем его с 3 уравнением.
{ a + b + c = 6
{ 0a + 2b + 3c = 23
{ 0a + 0b + c = 13
c = 13
Подставляем с во 2 уравнение
2b + 3*13 = 23
2b = 23 - 39 = -16
b = -8
Подставляем b и с в 1 уравнение
a - 8 + 13 = 6
a = 6 + 8 - 13 = 1
f(x) = 1x^2 - 8x + 13
Абсцисса вершины:
x0 = -b/(2a) = 8/(2*1) = 4
Ордината вершины:
f(4) = 4^2 - 8*4 + 13 = 16 - 32 + 13 = -3
ответ: 1/6
Объяснение: для начала выведем формулу самой прямой.
Пусть прямая, проходящая через заданные точки, имеет вид у = kx + b.
По условию y(1) = 0, y(0) = -3.
1)1 · k + b =0, k + b = 0 ⇒ k = -b.
2)0·k + b = -3. b = -3 ⇒ k = 3.
Исходная прямая - y = 3x - 3.
Теперь исследуем функцию y = -x² + 4x - 3. График - парабола, ветви направлены вниз.
Нули функции - x = 1 и x = 3. Вершина: x = -b/2a = -4/-2=2, y=-2²+8-3=-4+5=1. (2; 1) Нам этого достаточно.
Строим графики (во вложении. Фигура, площадь которой нужно найти, заштрихована красным).
Площадь фигуры будем искать на отрезке [0; 1]
По формуле где f(x) ≥ g(x) (т.е. график функции f выше графика функции g) находим искомую площадь:
Искомая площадь - S = 1/6 (кв. ед)
Поделитесь своими знаниями, ответьте на вопрос:
Розкладіть на множники: 15р^4+10р^3п
решение на фото
............