Раскроем скобки. Для раскрытия квадрата разности воспользуемся формулой:
После чего приведем подобные слагаемые и найдем значение x.
impuls20125948
02.02.2021
___________________________
Готово!!Удачи))))
ПетровичЖивотовская1245
02.02.2021
Пусть искомые основания исходной трапеции равны a и b, а средняя линия равна c. Пусть средние линии двух меньших трапеций равны соответственно равны d и e (см. рисунок). Как известно, средняя линия трапеции равна полусумме оснований, значит (a+b)/2=20 ⇒ a+b=40. Выразим через a и b отрезки d и e: d=(a+c)/2=(a+(a+b)/2)/2=(a+a/2+b/2)/2=(3a/2+b/2)/2=3a/4+b/4, e=(b+c)/2=(b+(a+b)/2)/2=(b+a/2+b/2)/2=(a/2+3b/2)/2=a/4+3b/4. Тогда разность средних линий малых трапеций будет равна: e-d=a/4+3b/4-3a/4-b/4=b/2-a/2=(b-a)/2. По условию задачи эта разность равна 12 см, значит (b-a)/2=12 ⇒ b-a=24. Составим и решим систему уравнений относительно a и b:
Решим систему методом сложения: (1)+(2), получим 2b=64 ⇒ b=64/2=32 (см). Подставим получившийся результат в любое уравнение системы, например в (1): a+32=40 ⇒ a=40-32=8 (см). ответ: 8 см и 32 см.
ustinov434
02.02.2021
Пусть х кубометров грунта в час может вырыть первый экскаватор, тогда второй экскаватор роет у кубометров в час. За 6 часов совместной работы 6х+6у они вырыли 330 кубометров грунта: 6х+6у=330 (1) Когда же один работал 7 часов (7х), а другой 5 часов (5у), было вырыто 325 кубометров грунта: 7х+5у=325 (2)
Составим и решим систему уравнений (методом сложения):
Умножим первое уравнение на -1,2
=(-5x+7x) + (-5у+5у)=-275+325 2х=50 х=50÷2=25 кубометров грунта в час вырывает первый экскаватор.
Подставим числовое значение х в одно из уравнений: 6х+6у=330 6×25+6у=330 6у=330-150 6у=180 у=180÷6 у=30 кубометров грунта в час вырывает второй экскаватор. ответ: первый экскаватор вырывает 25 кубометров грунта в час, а второй - 30 кубометров грунта в час.
3
Объяснение:
Раскроем скобки. Для раскрытия квадрата разности воспользуемся формулой:
После чего приведем подобные слагаемые и найдем значение x.