ответ: разделим все члены уравнения на 2, тогда d^2+6*d+3=0, по теореме Виета произведение корней равно х1*х2=3.
Объяснение:
aniramix
22.12.2020
Пусть Х - скорость течения реки. Тогда скорость лодки по течению: (11+Х)км/час, против течения: (11-Х)км/час. Время лодки по течению: 96/(11+Х), против течения 96(11-Х); По условию 96/(11-Х) - 96(11+Х) = 10. Умножим все члены уравнения на общий знаменатель (11+Х)(11-Х) и сократим его. Получим: 96·11 + 96Х - 96·11 +95Х = 10(11+Х)(11-Х); 2·96Х = 10·121 - 10Х²; Для удобства сократим на 2 и решим полученное квадратное уравнение: 5Х² + 96Х - 5·121 = 0; Х₁ = (-96+√(96²+100·121)):10 = (-96 + √21316):10 = (-96 + 146):10 = 5(км/час) (Это сильное течение!) Отрицательный Х₂ не рассматриваем. Скорость течения равна 5км/час. Проверка: 96км:(11-5)км/час - 96:(11+6)км/час= 16час-6час=10час, что соответствует условию
gullieta
22.12.2020
Y = x -Lnx Облость определения : x ∈ (0;∞) y ' = (x -Lnx) ' = (x) ' - (Lnx) ' =1 - 1/x =(x - 1)/x Критические точки : y ' = 0 ; (x - 1)/x =0 ; x = 1 ; Эта единстветннуая критическая точка для данной функции Промежутки монотонности: функция убывает ,если y ' ≤ 0 ; (x - 1)/x ≤ 0 т.е. при x ∈ (0;1] функция возрастает, если y ' ≥ 0 ; (x - 1)/x ≥ 0 т.е. при x ∈ [1; ∞ ) Единстветнная точка экстремума : x=1 В этой точке(точка экстремума) функция принимает минимальное значение min(y) = 1 - Ln1=1 - 0 =1
2d²+12d+6=0 |÷2
d²+6d+3=0
D=36-12=24
d1=-6+2√6/2=-3+√6
d2=-6-2√6/2=-3-√6
d1×d2=(-3+√6)(-3-√6)=9-6=3
ответ: 3