drevile57
?>

Постройте на координатной плоскости множество точек, координаты которых удовлетворяют системе неравенств​

Алгебра

Ответы

ldstroy

72км

Объяснение:

1-й мотоциклист, проехав расстояние от А до В, повернул и проехал от В 12км, пока не встретил 2-го мотоциклиста. Возьмем х за расстояние, которое проехал 2-й мотоциклист до встречи с 1-м. Следовательно расстояние от А до В, которое возьмем за у будет равным:

у=х+12.

Когда на обратном пути 1-й мотоциклист, проехав (1/6 у)км расстояния от А, встречает 2-го мотоциклиста (не обгоняет!). Значит расстояние между А и В будет равным:

у=х +1/6 у.

Составляем систему уравнений:

у=х+12

у=х +1/6 у

х+12-х -1/6 у=у-у

12 -1/6 у=0

1/6 у=12

у=12•6=72км - расстояние между пунктами А и В.

kate281078
Задана функция
f(x) = х² - 7х + 3. 
уравнение касательной имеет вид:
у = f(a) + f'(a)·(x - a), где а - абсцисса точки на графике функции, к которой проведена касательная.
f(a) = a² - 7a + 3
Производная функции
f'(x) = 2x- 7
f'(a) = 2a - 7
Прямая, которой параллельна касательная задана уравнением
у =  -5х + 3
Эта прямая и касательная имеют одинаковые угловые коэффициенты,
то есть f'(a) =  - 5
2a - 7 = - 5
2a = 2
a = 1
Тогда f(a) = 1 - 7 + 3 = -3 и f'(a) = -5
подставим  a, f(a) и f'(а) в уравнение касательной
у = -3 -5(х - 1)
y = -3 - 5x + 5
y = -5x + 2 - это и есть искомое уравнение касательной

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Постройте на координатной плоскости множество точек, координаты которых удовлетворяют системе неравенств​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Владимирович_Слабый
Михаил736
drozd2008
Карева Даниил1537
Яна_Софья
Lenamihluk50
Грудинин604
galinab1111326
baranova302
vnolenev
Bella Sergei
annabanova9
milo4ka26
Попов1946
Okunev1034