info2471
?>

ПАМАГИТЕ РЕШИТЬ ИНТЕГРАЛЫ. МНЕ ЛЮДИ СКРИН ЕСТЬ. ">

Алгебра

Ответы

doorhan42n6868

\int\limits^2_1\, (x-4)\, dx=\dfrac{(x-4)^2}{2}\Big|_1^2=\dfrac{4}{2}-\dfrac{9}{2}=-\dfrac{5}{2}=-2,5\\\\\\\\\int\limits^{\pi }_{\pi /6}\, 4\, sinx\, dx=-4cosx\Big|_{\pi /6}^{\pi }=-4\, \Big(cos\pi -cos\dfrac{\pi}{6}\Big)=-4\, \Big(-1-\dfrac{\sqrt3}{2}\Big)=\\\\\\=4+2\sqrt3=2\, (2+\sqrt3)

yamalsva45
Графики во вложении.
Все функции в условии, являются уравнениями чей график - обычная прямая. Так как они имеют вид:
y=ax+b- a угловой коэффициент,b точка пересечения прямой с осью у.

У каждой прямой b=0, следовательно, данные прямые пересекают ось у в начале координат.
А так же ось х в начале координат. Так как:
0=ax\\x=0

Это прямые, а значит:
D(y)=(-\infty,+\infty) - область определения.
E(y)=(-\infty,+\infty)- область значений.

Теперь, по отдельности строим каждый график:
1. 
y=3x

Здесь a=3 \Rightarrow 3\ \textgreater \ 0, следовательно, данная функция всегда возрастает.
Нуль функции:
y=0 \Rightarrow (0,0)

Знак функции:
f(x) \geq 0 \rightarrow x\in[0,+\infty)
f(x)\ \textless \ 0 \rightarrow x\in (-\infty,0)

2. 
y=-1,5x

Здесь  a=-1,5x \Rightarrow -1,5\ \textless \ 0 следовательно, данная функция всегда убывает.
Нуль функции:
y=0 \Rightarrow (0,0)

Знак функции:
f(x) \geq 0 \rightarrow x\in(-\infty,0]
f(x)\ \textless \ 0 \rightarrow x\in(0,+\infty)

3.
y=x

Здесь a=1 \Rightarrow 1\ \textgreater \ 0, следовательно, данная функция всегда возрастает.
Нуль функции:
y=0 \Rightarrow (0,0)

Знак функции:
f(x) \geq 0 \rightarrow x\in(-\infty,0]
f(x)\ \textless \ 0 \rightarrow x\in(0,+\infty)

4.
y=-x

Здесь  a=-1x \Rightarrow -1\ \textless \ 0 следовательно, данная функция всегда убывает.
Нуль функции:
y=0 \Rightarrow (0,0)

Знак функции:
f(x) \geq 0 \rightarrow x\in(-\infty,0]
f(x)\ \textless \ 0 \rightarrow x\in(0,+\infty)

5.
y=2,5x

Здесь a=2,5\Rightarrow 2,5\ \textgreater \ 0, следовательно, данная функция всегда возрастает.
Нуль функции:
y=0 \Rightarrow (0,0)

Знак функции:
f(x) \geq 0 \rightarrow x\in(-\infty,0]
f(x)\ \textless \ 0 \rightarrow x\in(0,+\infty)

6.
y=-4,5x

Здесь  a=-4,5x \Rightarrow -4,5\ \textless \ 0 следовательно, данная функция всегда убывает.
Нуль функции:
y=0 \Rightarrow (0,0)

Знак функции:
f(x) \geq 0 \rightarrow x\in(-\infty,0]
f(x)\ \textless \ 0 \rightarrow x\in(0,+\infty)

Постройте график прямой пропорциональности, заданной формулой: y=3x y=-1,5x y=x y=-x y=2,5x y=-4,5x
Постройте график прямой пропорциональности, заданной формулой: y=3x y=-1,5x y=x y=-x y=2,5x y=-4,5x
Постройте график прямой пропорциональности, заданной формулой: y=3x y=-1,5x y=x y=-x y=2,5x y=-4,5x
lsuvorova1987
Графики во вложении.
Все функции в условии, являются уравнениями чей график - обычная прямая. Так как они имеют вид:
y=ax+b- a угловой коэффициент,b точка пересечения прямой с осью у.

У каждой прямой b=0, следовательно, данные прямые пересекают ось у в начале координат.
А так же ось х в начале координат. Так как:
0=ax\\x=0

Это прямые, а значит:
D(y)=(-\infty,+\infty) - область определения.
E(y)=(-\infty,+\infty)- область значений.

Теперь, по отдельности строим каждый график:
1. 
y=3x

Здесь a=3 \Rightarrow 3\ \textgreater \ 0, следовательно, данная функция всегда возрастает.
Нуль функции:
y=0 \Rightarrow (0,0)

Знак функции:
f(x) \geq 0 \rightarrow x\in[0,+\infty)
f(x)\ \textless \ 0 \rightarrow x\in (-\infty,0)

2. 
y=-1,5x

Здесь  a=-1,5x \Rightarrow -1,5\ \textless \ 0 следовательно, данная функция всегда убывает.
Нуль функции:
y=0 \Rightarrow (0,0)

Знак функции:
f(x) \geq 0 \rightarrow x\in(-\infty,0]
f(x)\ \textless \ 0 \rightarrow x\in(0,+\infty)

3.
y=x

Здесь a=1 \Rightarrow 1\ \textgreater \ 0, следовательно, данная функция всегда возрастает.
Нуль функции:
y=0 \Rightarrow (0,0)

Знак функции:
f(x) \geq 0 \rightarrow x\in(-\infty,0]
f(x)\ \textless \ 0 \rightarrow x\in(0,+\infty)

4.
y=-x

Здесь  a=-1x \Rightarrow -1\ \textless \ 0 следовательно, данная функция всегда убывает.
Нуль функции:
y=0 \Rightarrow (0,0)

Знак функции:
f(x) \geq 0 \rightarrow x\in(-\infty,0]
f(x)\ \textless \ 0 \rightarrow x\in(0,+\infty)

5.
y=2,5x

Здесь a=2,5\Rightarrow 2,5\ \textgreater \ 0, следовательно, данная функция всегда возрастает.
Нуль функции:
y=0 \Rightarrow (0,0)

Знак функции:
f(x) \geq 0 \rightarrow x\in(-\infty,0]
f(x)\ \textless \ 0 \rightarrow x\in(0,+\infty)

6.
y=-4,5x

Здесь  a=-4,5x \Rightarrow -4,5\ \textless \ 0 следовательно, данная функция всегда убывает.
Нуль функции:
y=0 \Rightarrow (0,0)

Знак функции:
f(x) \geq 0 \rightarrow x\in(-\infty,0]
f(x)\ \textless \ 0 \rightarrow x\in(0,+\infty)

Постройте график прямой пропорциональности, заданной формулой: y=3x y=-1,5x y=x y=-x y=2,5x y=-4,5x
Постройте график прямой пропорциональности, заданной формулой: y=3x y=-1,5x y=x y=-x y=2,5x y=-4,5x
Постройте график прямой пропорциональности, заданной формулой: y=3x y=-1,5x y=x y=-x y=2,5x y=-4,5x

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

ПАМАГИТЕ РЕШИТЬ ИНТЕГРАЛЫ. МНЕ ЛЮДИ СКРИН ЕСТЬ. ">
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

bellatrixstudio
predatorfishing608
Yevgenii_Gurtovaya1532
mrvasilev2012
Барскова1943
annaan-dr582
karnakova-a
Иванович621
Борисовна
maslprod
grekova5
Rjkjneirbyf555
Игоревна Худанов1150
Shpunt-86
novocherkutino7