(x+2)(x-1)(3x-7)≤0 Решаем неравенство методом интервалов. Находим нули функции у=(x+2)(x-1)(3x-7) (x+2)(x-1)(3x-7)=0 Произведение нескольких множителей равно нулю, когда хотя бы один из них равен нулю. х+2 = 0 или х - 1 = 0 или 3х - 7 = 0 х=-2 или х=1 или х=2 целых 1/3 Отмечаем точки на числовой прямой заполненным кружком (здесь это квадратные скобки) и расставляем знаки : - + - + при х = -10 получаем (-10+2)(-10-1)(-30-7) <0 _ + _ + [-2][1][2целых1/3] поэтому на интервале, содержащем точку (-10),знак минус, далее знаки чередуем. ответ: (−∞;−2]∪[1; 2 целых 1/3]
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Исследовать функцию методами дифференциального исчисления и построить ее график. (Прикреплен пример)
График вышел немного кривоватый