layna1241383
?>

Может кто-нибудь решить и объяснить? Я не могу понять сам алгоритм решения.

Алгебра

Ответы

krikriska84

вынесение и внесение под знак корня

(√8 - 3)(3 + 2√2) = (√8 - 3)(√2*2² + 3) =  (√8 - 3)(√8 + 3) =-1   Р

(√27 - 2)(2 - 3√3) = (√27 - 2)(2 - √27) = 27 + 2 - 4√27 = 29 - 4√27  И

(√50 + 4√2)√2 = (5√2 + 4√2)√2 = 9√2*√2 = 18   Р

(5√3 + √27):√3 = (5√3 + 3√3):√3 = 8    P

(√3 - 1)² + (√3 + 1)² = 3 - 2√3 + 1 + 3 + 2√3 + 1 = 8  P

(√5 - 1)² - (2√5 + 1)² = 5 - 2√5 + - 4*5 - 4√5 - 1 = -16 - 6√5  И

gorodof4292

\boxed{\dfrac{8}{3}} квадратных единиц

Объяснение:

Построим график y = -x^{2} + 4x - 4

Пусть S площадь ограниченная графиком функции  y = -x^{2} + 4x - 4  осями координат. Пусть точка B - пересечение графика y и оси абсцисс, точка A - пересечение графика y и оси ординат.

y(0) = -0^{2} + 4 * 0 - 4 = -4

y = 0

-x^{2} + 4x - 4 = 0|*(-1)

x^{2} - 4x + 4 =0

(x - 2)^{2} = 0 \Longleftrightarrow x - 2 =0

x = 2

Координаты точек A и B:

A(0;-4)

B(2;0)

Пусть точка начало системы координат, тогда точка O имеет координаты O(0;0).

Узнаем уравнение прямой проходящей через точки A и B. Уравнение прямой с угловым коэффициентом в общем виде: y = kx + b.

\displaystyle \left \{ {{A: -4=k * 0 + b} \atop {B:0=2*k + b}} \right.\displaystyle \left \{ {{ b=-4} \atop {0=2k - 4}} \right.\displaystyle \left \{ {{ b=-4} \atop {4=2k |:2}} \right.\displaystyle \left \{ {{ b=-4} \atop {k = 2}} \right.

y = 2x - 4

Пусть S_{1} - площадь между прямой y = 2x - 4 и функцией y = -x^{2} + 4x - 4

Пусть f(x) = y = 2x - 4 и g(x) = y = -x^{2} + 4x - 4.

S = S_{\bigtriangleup AOB} - S_{1}

OA = \sqrt{(x_{A} - x_{O})^{2} + (y_{A} - y_{O})^{2}} = \sqrt{(0 - 0)^{2} + (-4 - 0)^{2}} =\sqrt{16} = 4

OB = \sqrt{(x_{B} - x_{O})^{2} + (y_{B} - y_{O})^{2}} = \sqrt{(2 - 0)^{2} + (0 - 0)^{2}} =\sqrt{4} = 2

По формуле площади прямоугольного треугольника:

S_{\bigtriangleup AOB} = \dfrac{AO * OB}{2} = \dfrac{4 * 2}{2} = 4.

Промежуток интегрирования: [0;2]

Докажем, что f(x) \geq g(x) при x \in [0;2]

2x- 4 \geq -x^{2} + 4x - 4

x^{2} - 2x \geq 0

x(x - 2) \geq 0

x \in (-\infty;0] \cup [2;+\infty) тогда можно сделать вывод, что

g(x) \geq f(x) при x \in [0;2].

По теореме:

S_{1} = \displaystyle \int\limits^2_0 {(g(x) - f(x))} \, dx = \int\limits^2_0 {-x^{2} +4x - 4 - 2x + 4} \, dx = \int\limits^2_0 {2x-x^{2}} \, dx =

= x^{2} - \dfrac{x^{3} }{3} \bigg|_0^2 = (2^{2} - \dfrac{2^{3} }{3}) - 0 = 4 - \dfrac{8}{3} = \dfrac{12 - 8}{3} = \dfrac{4}{3}.

S = S_{\bigtriangleup AOB} - S_{1} = 4 - \dfrac{4}{3} = \dfrac{12 -4}{3} = \dfrac{8}{3} квадратных единиц.


найти площадь фигуры,ограниченной осями координат и параболой
найти площадь фигуры,ограниченной осями координат и параболой
найти площадь фигуры,ограниченной осями координат и параболой
Avdeeva Inga1505

ответ

Объяснение:

1)  3 1/9 : 2 1/3 - 2 5/6=28/9 : 7/3 -2 5/6=28/9*3/7 -2.5/6=4/3-2 5/6=

=8/6-2 5/6=-(2 5/6 -1 2/6)=-1 3/6=-1 1/2 = -1.5;

2)  1 5/7 - 4 3/13 : 1 19/26 = 1 5/7 - 55/13 : 45/26=1 5/7-55/13*26/45 =

=1 5/7-22/9 = 1 5/7 - 2 4/9 = -(2 28/63-1 45/63) = - (1 (28-45)/63)=

=-(63+28-45)/63= -46/63;

3)  10 16/17 : 8 5/11 + 1 2/3 = 186/17 : 93/11 +1 2/3 = 186/17 * 11/93 + 1 2/3 =

=22/17+1 2/3=1 5/17+1 2/3=1 15/51 + 1 34/51 = 2 49/51;

4)  47/48 : 3 13/27 - 13/16= 47/48 : 94/27 - 13/16 = 47/48*27/94 -13/16=

= 27/96-13/16 = 27/96-78/96=-51/96=-17/32.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Может кто-нибудь решить и объяснить? Я не могу понять сам алгоритм решения.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Chopper-hinter25
Vera_Shuklin
guzelda19904850
Natacha3636672
Matveevanastya0170
cafemgimo
kirieskamod262
A2017
aynaakzhigitova
lukur2005
femida69
mbudilina
oloinics
slonikkristi69
innesagrosheva22