1) 4x + 6y = a
Так как пара чисел (–2; 4) является решением, то, подставив в уравнение числа –2 и 4, должно получиться верное равенство.
В паре чисел на первом месте стоит х, на втором у
(х; у)
Тогда в уравнение подставляем х = –2; у = 4
4∙(–2) + 6∙4 = a
–8 + 24 = а
16 = а
4x + 6y = 16
при а = 16 пара чисел (–2; 4) является решением уравнения.
2) ax – 5y = 8
Выполним то же самое, как и в предыдущем примере.
Так как пара чисел (–2; 4) является решением, то, подставив в уравнение
–2 и 4, должно получиться верное равенство.
Тогда в уравнение подставляем х = –2; у = 4
a∙(–2) – 5∙4 = 8
–2а – 20 = 8
–2а = 8 + 20
2а = –28
а = –14
–14x – 5y = 8
при а = –14 пара чисел (–2; 4) является решением.Поделитесь своими знаниями, ответьте на вопрос:
Определи значение тангенса угла наклона касательной к графику функции y = f(x) в точке x0, если касательная записана уравнением y = х+ 2. tg α = ?(ответ нужен в виде °)
Областью определения выражения являются все вещественные числа, кроме тех, при которых выражение не определено. В данном случае нет вещественных чисел, при которых выражение было бы неопределенным.
Запись в виде интервала:
(−∞,∞)
Нотация построения множества:
{x|x∈R}
Область значений - это набор всех допустимых значений y.Используйте график для определения области значений.
Запись в виде интервала:
(−∞,1]
Определяем область определения и область значений.
Область определения:
(−∞,∞),{x|∈R}
Область значений:
(−∞,1],{y|y≤1}
Объяснение: